我想使用条件从另一个np.array构造一个np.array。对于每个值,如果满足条件,则必须应用一个操作,否则应用另一个操作。我写的计算由于转换到列表而变得难看。是否可以通过不转换为列表来提高速度?
THR = 1.0
THR_REZ = 1.0 / THR**2
def thresholded_function(x):
if x < THR:
return THR_REZ
else:
return 1.0 / x**2
rad2 = .....some_np_array.....
rez = np.array([threshold(r2) for r2 in rad2])
答案 0 :(得分:1)
使用np.where
-
np.where(x < THR, THR_REZ, 1.0/x**2) # x is input array
示例运行 -
In [267]: x = np.array([3,7,2,1,8])
In [268]: THR, THR_REZ = 5, 0
In [269]: np.where(x < THR, THR_REZ, 1.0/x**2)
Out[269]: array([ 0. , 0.02040816, 0. , 0. , 0.015625 ])
In [270]: def thresholded_function(x, THR, THR_REZ):
...: if x < THR:
...: return THR_REZ
...: else:
...: return 1.0 / x**2
In [272]: [thresholded_function(i,THR, THR_REZ) for i in x]
Out[272]: [0, 0.02040816326530612, 0, 0, 0.015625]