我想基于python中的以下字典替换2D numpy数组中的值:
code region
334 0
4 22
8 31
12 16
16 17
24 27
28 18
32 21
36 1
我想在numpy
2D数组中找到与code
匹配的单元格,并替换为region
列中的相应值。问题是,这将导致code = 12
替换为region = 16
,在下一行中,所有值为16的单元格(包括刚刚分配值为16的单元格)将被替换为值17.如何防止这种情况?
答案 0 :(得分:6)
这里'是一个基于np.searchsorted
的矢量化版本,用于追溯数组中每个键的位置,然后替换并请原谅这里几乎性别的函数名称(虽然不能帮助它 -
def replace_with_dict(ar, dic):
# Extract out keys and values
k = np.array(list(dic.keys()))
v = np.array(list(dic.values()))
# Get argsort indices
sidx = k.argsort()
# Drop the magic bomb with searchsorted to get the corresponding
# places for a in keys (using sorter since a is not necessarily sorted).
# Then trace it back to original order with indexing into sidx
# Finally index into values for desired output.
return v[sidx[np.searchsorted(k,ar,sorter=sidx)]]
示例运行 -
In [82]: dic ={334:0, 4:22, 8:31, 12:16, 16:17, 24:27, 28:18, 32:21, 36:1}
...:
...: np.random.seed(0)
...: a = np.random.choice(dic.keys(), 20)
...:
In [83]: a
Out[83]:
array([ 28, 16, 32, 32, 334, 32, 28, 4, 8, 334, 12, 36, 36,
24, 12, 334, 334, 36, 24, 28])
In [84]: replace_with_dict(a, dic)
Out[84]:
array([18, 17, 21, 21, 0, 21, 18, 22, 31, 0, 16, 1, 1, 27, 16, 0, 0,
1, 27, 18])
<强>改进强>
对于大型数组,更快的是对值和键数组进行排序,然后使用searchsorted
而不使用sorter
,就像这样 -
def replace_with_dict2(ar, dic):
# Extract out keys and values
k = np.array(list(dic.keys()))
v = np.array(list(dic.values()))
# Get argsort indices
sidx = k.argsort()
ks = k[sidx]
vs = v[sidx]
return vs[np.searchsorted(ks,ar)]
运行时测试 -
In [91]: dic ={334:0, 4:22, 8:31, 12:16, 16:17, 24:27, 28:18, 32:21, 36:1}
...:
...: np.random.seed(0)
...: a = np.random.choice(dic.keys(), 20000)
In [92]: out1 = replace_with_dict(a, dic)
...: out2 = replace_with_dict2(a, dic)
...: print np.allclose(out1, out2)
True
In [93]: %timeit replace_with_dict(a, dic)
1000 loops, best of 3: 453 µs per loop
In [95]: %timeit replace_with_dict2(a, dic)
1000 loops, best of 3: 341 µs per loop
所有数组元素不在字典中的一般情况
如果输入数组中的所有元素都不能保证在字典中,我们需要更多工作,如下所示 -
def replace_with_dict2_generic(ar, dic, assume_all_present=True):
# Extract out keys and values
k = np.array(list(dic.keys()))
v = np.array(list(dic.values()))
# Get argsort indices
sidx = k.argsort()
ks = k[sidx]
vs = v[sidx]
idx = np.searchsorted(ks,ar)
if assume_all_present==0:
idx[idx==len(vs)] = 0
mask = ks[idx] == ar
return np.where(mask, vs[idx], ar)
else:
return vs[idx]
示例运行 -
In [163]: dic ={334:0, 4:22, 8:31, 12:16, 16:17, 24:27, 28:18, 32:21, 36:1}
...:
...: np.random.seed(0)
...: a = np.random.choice(dic.keys(), (20))
...: a[-1] = 400
In [165]: a
Out[165]:
array([ 28, 16, 32, 32, 334, 32, 28, 4, 8, 334, 12, 36, 36,
24, 12, 334, 334, 36, 24, 400])
In [166]: replace_with_dict2_generic(a, dic, assume_all_present=False)
Out[166]:
array([ 18, 17, 21, 21, 0, 21, 18, 22, 31, 0, 16, 1, 1,
27, 16, 0, 0, 1, 27, 400])
答案 1 :(得分:0)
我这样做的方法有两个:第一步,获取与要替换的值对应的索引,然后替换值。
arr = np.array([1,2,3,1,2,3])
code = np.array([1,2])
region = np.array([2,3])
index_list = []
for val in code:
index_list.append(np.where(arr == val)[0])
for indexes, replace_val in zip(index_list, region):
arr[indexes] = replace_val