我正在构建一些代码来自适应地检测来自网络摄像头视频的皮肤。我几乎可以工作,但是,在输出视频时,它会显示9个"皮肤"面具而不是一个。似乎我只是遗漏了一些简单的东西,但我无法弄清楚。
以下代码:
# first let's train the data
data, labels = ReadData()
classifier = TrainTree(data, labels)
# get the webcam. The input is either a video file or the camera number
# since using laptop webcam (only 1 cam), input is 0. A 2nd cam would be input 1
camera = cv2.VideoCapture(0)
while True:
# reads in the current frame
# .read() returns True if frame read correctly, and False otherwise
ret, frame = camera.read() # frame.shape: (480,640,3)
if ret:
# reshape the frame to follow format of training data (rows*col, 3)
data = np.reshape(frame, (frame.shape[0] * frame.shape[1], 3))
bgr = np.reshape(data, (data.shape[0], 1, 3))
hsv = cv2.cvtColor(np.uint8(bgr), cv2.COLOR_BGR2HSV)
# once we have converted to HSV, we reshape back to original shape of (245057,3)
data = np.reshape(hsv, (hsv.shape[0], 3))
predictedLabels = classifier.predict(data)
# the AND operator applies the skinMask to the image
# predictedLabels consists of 1 (skin) and 2 (non-skin), needs to change to 0 (non-skin) and 255 (skin)
predictedMask = (-(predictedLabels - 1) + 1) * 255 # predictedMask.shape: (307200,)
# resize to match frame shape
imgLabels = np.resize(predictedMask, (frame.shape[0], frame.shape[1], 3)) # imgLabels.shape: (480,640,3)
# masks require 1 channel, not 3, so change from BGR to GRAYSCALE
imgLabels = cv2.cvtColor(np.uint8(imgLabels), cv2.COLOR_BGR2GRAY) # imgLabels.shape: (480,640)
# do bitwsie AND to pull out skin pixels. All skin pixels are anded with 255 and all others are 0
skin = cv2.bitwise_and(frame, frame, mask=imgLabels) # skin.shape: (480,640,3)
# show the skin in the image along with the mask, show images side-by-side
# **********THE BELOW LINE OUTPUTS 9 screens of the skin mask instead of just 1 ****************
cv2.imshow("images", np.hstack([frame, skin]))
# if the 'q' key is pressed, stop the loop
if cv2.waitKey(1) & 0xFF == ord("q"):
break
else:
break
# release the video capture
camera.release()
cv2.destroyAllWindows()
答案 0 :(得分:0)
您正在使用位图。要了解他们持有什么,cv2.imshow
他们个人。然后你会看到(字面上)数据出错的地方。
现在,罪魁祸首很可能是np.resize()
:
np.resize(a, new_shape)
返回具有指定形状的新数组。
如果新阵列大于原始阵列,则新阵列 充满了
a
的重复副本。请注意,此行为是 与a.resize(new_shape)不同,后者用零填充而不是 重复a
。
要缩放位图(=在努力保留相同的可视图像时调整大小),请按OpenCV: Geometric Transformations of Images使用cv2.resize()
。