使用间隔超过一小时划分行/ R中的时间转换问题

时间:2017-11-07 18:52:06

标签: r

我有ID,关闭时间和开放时间的数据。我需要将跨越一个小时的每一行分成多行,每行包含一个ID,这样每行的开放和关闭时间都不会超过一小时。理想情况下,这会留下仅在同一小时内打开和关闭时间的行。它还会在每一行中保留ID。

例如,如果我的开放时间是从上午11:55到下午1:10 - 我希望从这个相应的列中得到三行。一个是11:55 - 12,12:1和1 - 1:10。

我相信我已经提出了一个解决方案,但它很复杂:

dat <- tibble(ID = c(2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L),
                  open_time = structure(c( 1509378717, 1509475803, 1509460317, 1509372561, 1508445791, 1508962523, 1509483224, 1509483978, 1509483727),
                                        tzone = "America/New_York",
                                        class = c("POSIXct", "POSIXt")),
                  close_time = structure(c( 1509383226, 1509476435, 1509462052, 1509376589, 1508445791, 1508962523, 1509483543, 1509483983, 1509483727),
                                         tzone = "America/New_York",
                                         class = c("POSIXct", "POSIXt")))

split_by_hour <- function(open_time, close_time){

  # get hours to span
  hour_start <- lubridate::ceiling_date(open_time, 'hour')
  hour_end <- lubridate::floor_date(close_time, 'hour')

  # hour sequence to create rows
  hour_seq <- seq(hour_start, hour_end, by = 'hour')

  # create tibble
  time_tbl <- tibble(
    open_time = lubridate::ymd_hms(c(open_time, hour_seq), tz = "America/New_York"),
    close_time = lubridate::ymd_hms(c(hour_seq, close_time), tz = "America/New_York")
  )

  time_tbl
}

row_hour_breakout <- function(rw){

  if(lubridate::floor_date(rw$open_time, 'hour') != lubridate::floor_date(rw$close_time, 'hour')){
    # if hours are different, use helper function and bind columns
    time_splits <- split_by_hour(rw$open_time, rw$close_time)
    dplyr::bind_cols(ID = rep(rw$ID, nrow(time_splits)),
                     time_splits)
  } else{
    # else return normal row
    rw[, c("ID", "open_time", "close_time")] 
  }
}

break_tbl_hourly <- function(hour_dat){
  purrr::by_row(hour_dat, row_hour_breakout, .labels = FALSE)[[1]] %>%
    dplyr::bind_rows()
}

>dat
# A tibble: 9 x 3
     ID           open_time          close_time
  <int>              <dttm>              <dttm>
1     2 2017-10-30 11:51:57 2017-10-30 13:07:06
2     1 2017-10-31 14:50:03 2017-10-31 15:00:35
3     2 2017-10-31 10:31:57 2017-10-31 11:00:52
4     1 2017-10-30 10:09:21 2017-10-30 11:16:29
5     2 2017-10-19 16:43:11 2017-10-19 16:43:11
6     1 2017-10-25 16:15:23 2017-10-25 16:15:23
7     2 2017-10-31 16:53:44 2017-10-31 16:59:03
8     1 2017-10-31 17:06:18 2017-10-31 17:06:23
9     2 2017-10-31 17:02:07 2017-10-31 17:02:07

> break_tbl_hourly(dat)
# A tibble: 14 x 3
      ID           open_time          close_time
   <int>              <dttm>              <dttm>
 1     2 2017-10-30 11:51:57 2017-10-30 12:00:00
 2     2 2017-10-30 12:00:00 2017-10-30 13:00:00
 3     2 2017-10-30 13:00:00 2017-10-30 13:07:06
 4     1 2017-10-31 14:50:03 2017-10-31 15:00:00
 5     1 2017-10-31 15:00:00 2017-10-31 15:00:35
 6     2 2017-10-31 10:31:57 2017-10-31 11:00:00
 7     2 2017-10-31 11:00:00 2017-10-31 11:00:52
 8     1 2017-10-30 10:09:21 2017-10-30 11:00:00
 9     1 2017-10-30 11:00:00 2017-10-30 11:16:29
10     2 2017-10-19 20:43:11 2017-10-19 20:43:11
11     1 2017-10-25 20:15:23 2017-10-25 20:15:23
12     2 2017-10-31 20:53:44 2017-10-31 20:59:03
13     1 2017-10-31 21:06:18 2017-10-31 21:06:23
14     2 2017-10-31 21:02:07 2017-10-31 21:02:07

最后,我想知道:

  1. 此代码可以改进的地方。它感觉不是很好的代码,但我花了一些时间来到这里,所以我转向StackOverflow寻求帮助
  2. 为什么将未更改的行转换为UTC(+4小时)时间?编辑:split_by_hour函数中的时区问题是罪魁祸首。
  3. 谢谢!

    =====================================

    跟进,基于上面的解决方案,我写了一个函数来做到这一点:

    # break rows function
    
    # df: data frame of interest
    # begin_time_var: variable of beginning times
    # end_time_var: variable of ending times
    
    break_rows_hourly <- function(df, begin_time_var, end_time_var){
    
      begin <- enquo(begin_time_var)
      end <- enquo(end_time_var)
    
      #######################################
      #
      # to be applied to each open/close time
      #
      #######################################
    
      split_by_hour <- function(open_time, close_time){
    
        # ensure open time is at least before close time
        if(open_time <= close_time){
    
          # get hours to span
          hour_start <- lubridate::ceiling_date(open_time, 'hour')
          hour_end <- lubridate::floor_date(close_time, 'hour')
    
          # check if hourly difference
          if(hour_start <= hour_end){
            #
            # if it is, then go on to create multiple rows
            #
    
            # hour sequence to create rows
            hour_seq <- seq(hour_start, hour_end, by = 'hour')
    
            # create tibble
            time_tbl <- tibble(
              open_time = lubridate::ymd_hms(c(open_time, hour_seq)),
              close_time = lubridate::ymd_hms(c(hour_seq, close_time))
            )
            return(time_tbl)
          } else {
            #
            # hour start > hour end, return 1 row
            #
    
            # create tibble
            time_tbl <- tibble(
              open_time = open_time,
              close_time = close_time
            )
            return(time_tbl)
          }
        } else {
          #
          # open time greater than close time, error printed statement
          #
          print("Close Time Before Open Time")
        }
      }
    
      #######################################
      #
      # applies split by row and creates a df
      #
      #######################################
      row_hour_breakout <- function(rw){
    
        # split row
        time_splits <- split_by_hour(rw %>% select(!!begin) %>% pull(), rw %>% select(!!end) %>% pull())
    
        # get orther columns
        other_cols <- rw %>% 
          select(-!!begin, - !!end) %>%
          map(function(x) rep(x, nrow(time_splits))) %>%
          as.tibble()
    
        dplyr::bind_cols(other_cols,
                         time_splits)
      }
    
      #######################################
      #
      # map to each row, rbind to return
      #
      #######################################
      return_df <- purrr::by_row(df, row_hour_breakout, .labels = FALSE)[[1]] %>%
        dplyr::bind_rows()
    
      return(return_df)
    }
    
    > break_rows_hourly(dat, open_time, close_time)
    # A tibble: 14 x 3
          ID           open_time          close_time
       <int>              <dttm>              <dttm>
     1     2 2017-10-30 11:51:57 2017-10-30 12:00:00
     2     2 2017-10-30 12:00:00 2017-10-30 13:00:00
     3     2 2017-10-30 13:00:00 2017-10-30 13:07:06
     4     1 2017-10-31 14:50:03 2017-10-31 15:00:00
     5     1 2017-10-31 15:00:00 2017-10-31 15:00:35
     6     2 2017-10-31 10:31:57 2017-10-31 11:00:00
     7     2 2017-10-31 11:00:00 2017-10-31 11:00:52
     8     1 2017-10-30 10:09:21 2017-10-30 11:00:00
     9     1 2017-10-30 11:00:00 2017-10-30 11:16:29
    10     2 2017-10-19 20:43:11 2017-10-19 20:43:11
    11     1 2017-10-25 20:15:23 2017-10-25 20:15:23
    12     2 2017-10-31 20:53:44 2017-10-31 20:59:03
    13     1 2017-10-31 21:06:18 2017-10-31 21:06:23
    14     2 2017-10-31 21:02:07 2017-10-31 21:02:07
    

1 个答案:

答案 0 :(得分:1)

您可以使用split-apply-combine策略。在这种情况下,我们必须在dat中逐行处理每一行。所以整个事情看起来像

do.call(rbind, lapply(split(dat, seq(nrow(dat))), expand.row))

其中expand.row是一个包含数据框的函数 恰好一行并输出一个包含一行或多行的数据帧。

split(...)部分创建一行数据帧列表。 lapply(..., expand.row)expand.row应用于列表中的每个元素,并将结果收集到不同的列表中。 do.call(rbind, ...)将第二个列表中的元素堆叠在一起,以获得结果数据框。

现在我们要做的就是写expand.row

expand.row <- function(x) {
    with(x, {
        h <- trunc(open_time, 'hour') + 3600 # nearest full hour > open_time
        if (h > close_time)
            p <- c(open_time, close_time)
        else
            p <- unique(c(open_time, seq(h, close_time, 3600), close_time))
        n <- length(p)
        data.frame(ID = ID, open_time = p[seq(1, n - 1)],
                   close_time = p[seq(2, n)])
    })
}

结果:

do.call(rbind, lapply(split(dat, seq(nrow(dat))), expand.row))
#    ID           open_time          close_time
#1.1  2 2017-10-30 16:51:57 2017-10-30 17:00:00
#1.2  2 2017-10-30 17:00:00 2017-10-30 18:00:00
#1.3  2 2017-10-30 18:00:00 2017-10-30 18:07:06
#2.1  1 2017-10-31 19:50:03 2017-10-31 20:00:00
#2.2  1 2017-10-31 20:00:00 2017-10-31 20:00:35
#3.1  2 2017-10-31 15:31:57 2017-10-31 16:00:00
#3.2  2 2017-10-31 16:00:00 2017-10-31 16:00:52
#4.1  1 2017-10-30 15:09:21 2017-10-30 16:00:00
#4.2  1 2017-10-30 16:00:00 2017-10-30 16:16:29
#5    2 2017-10-19 22:43:11 2017-10-19 22:43:11
#6    1 2017-10-25 22:15:23 2017-10-25 22:15:23
#7    2 2017-10-31 21:53:44 2017-10-31 21:59:03
#8    1 2017-10-31 22:06:18 2017-10-31 22:06:23
#9    2 2017-10-31 22:02:07 2017-10-31 22:02:07