考虑下面的数据框
df = pd.DataFrame({'Questions': ['What are you doing?','What are you doing tonight?','What are you doing now?','What is your name?','What is your nick name?','What is your full name?','Shall we meet?',
'How are you doing?' ]})
Questions 0 What are you doing? 1 What are you doing tonight? 2 What are you doing now? 3 What is your name? 4 What is your nick name? 5 What is your full name? 6 Shall we meet? 7 How are you doing?
如何使用类似的问题对数据框进行分组?即如何获得如下组:
for _, i in df.groupby('similarity')['Questions']:
print(i,'\n')
6 Shall we meet? Name: Questions, dtype: object 3 What is your name? 4 What is your nick name? 5 What is your full name? Name: Questions, dtype: object 0 What are you doing? 1 What are you doing tonight? 2 What are you doing now? 7 How are you doing? Name: Questions, dtype: object
有一个类似的问题被问到here,但清晰度较低,因此没有问题
答案 0 :(得分:2)
这是一个非常重要的方法,通过在系列中的所有元素之间找到normalized similarity score
,然后通过新获得的转换为字符串的相似性列表对它们进行分组。即
import numpy as np
import nltk
from nltk.corpus import wordnet as wn
import pandas as pd
def convert_tag(tag):
tag_dict = {'N': 'n', 'J': 'a', 'R': 'r', 'V': 'v'}
try:
return tag_dict[tag[0]]
except KeyError:
return None
def doc_to_synsets(doc):
"""
Returns a list of synsets in document.
Tokenizes and tags the words in the document doc.
Then finds the first synset for each word/tag combination.
If a synset is not found for that combination it is skipped.
Args:
doc: string to be converted
Returns:
list of synsets
Example:
doc_to_synsets('Fish are nvqjp friends.')
Out: [Synset('fish.n.01'), Synset('be.v.01'),
Synset('friend.n.01')]
"""
synsetlist =[]
tokens=nltk.word_tokenize(doc)
pos=nltk.pos_tag(tokens)
for tup in pos:
try:
synsetlist.append(wn.synsets(tup[0], convert_tag(tup[1]))[0])
except:
continue
return synsetlist
def similarity_score(s1, s2):
"""
Calculate the normalized similarity score of s1 onto s2
For each synset in s1, finds the synset in s2 with the largest similarity value.
Sum of all of the largest similarity values and normalize this value by dividing it by the number of largest similarity values found.
Args:
s1, s2: list of synsets from doc_to_synsets
Returns:
normalized similarity score of s1 onto s2
Example:
synsets1 = doc_to_synsets('I like cats')
synsets2 = doc_to_synsets('I like dogs')
similarity_score(synsets1, synsets2)
Out: 0.73333333333333339
"""
highscores = []
for synset1 in s1:
highest_yet=0
for synset2 in s2:
try:
simscore=synset1.path_similarity(synset2)
if simscore>highest_yet:
highest_yet=simscore
except:
continue
if highest_yet>0:
highscores.append(highest_yet)
return sum(highscores)/len(highscores) if len(highscores) > 0 else 0
def document_path_similarity(doc1, doc2):
synsets1 = doc_to_synsets(doc1)
synsets2 = doc_to_synsets(doc2)
return (similarity_score(synsets1, synsets2) + similarity_score(synsets2, synsets1)) / 2
def similarity(x,df):
sim_score = []
for i in df['Questions']:
sim_score.append(document_path_similarity(x,i))
return sim_score
从上面定义的方法我们现在可以做到
df['similarity'] = df['Questions'].apply(lambda x : similarity(x,df)).astype(str)
for _, i in df.groupby('similarity')['Questions']:
print(i,'\n')
输出:
6 Shall we meet? Name: Questions, dtype: object 3 What is your name? 4 What is your nick name? 5 What is your full name? Name: Questions, dtype: object 0 What are you doing? 1 What are you doing tonight? 2 What are you doing now? 7 How are you doing? Name: Questions, dtype: object
这不是解决问题的最佳方法,而且速度很慢。任何新方法都受到高度赞赏。
答案 1 :(得分:0)
您应该首先对列表/数据框列中的所有名称进行排序,然后仅对n-1行运行相似性代码,即对每一行,将其与下一个元素进行比较。 如果两者相似,则可以将它们分类为1或0,然后解析列表。 而不是将每一行与其他所有n ^ 2的元素进行比较。