Flink:如何将弃用的折叠转换为聚合?

时间:2017-11-05 16:17:21

标签: scala aggregate apache-flink fold flink-streaming

我正在关注Flink的快速启动示例:Monitoring the Wikipedia Edit Stream

示例在Java中,我在Scala中实现它,如下所示:

/**
 * Wikipedia Edit Monitoring
 */
object WikipediaEditMonitoring {
  def main(args: Array[String]) {
    // set up the execution environment
    val env: StreamExecutionEnvironment = StreamExecutionEnvironment.getExecutionEnvironment

    val edits: DataStream[WikipediaEditEvent] = env.addSource(new WikipediaEditsSource)

    val result = edits.keyBy( _.getUser )
      .timeWindow(Time.seconds(5))
      .fold(("", 0L)) {
        (acc: (String, Long), event: WikipediaEditEvent) => {
          (event.getUser, acc._2 + event.getByteDiff)
        }
      }

    result.print

    // execute program
    env.execute("Wikipedia Edit Monitoring")
  }
}

但是,Flink中的fold功能已经已弃用,建议使用aggregate功能。

enter image description here

但我没有找到关于如何将弃用的fold转换为aggregrate的示例或教程。

知道怎么做吗?可能不仅仅是应用aggregrate

更新

我有另外一个实现如下:

/**
 * Wikipedia Edit Monitoring
 */
object WikipediaEditMonitoring {
  def main(args: Array[String]) {
    // set up the execution environment
    val env: StreamExecutionEnvironment = StreamExecutionEnvironment.getExecutionEnvironment

    val edits: DataStream[WikipediaEditEvent] = env.addSource(new WikipediaEditsSource)

    val result = edits
      .map( e => UserWithEdits(e.getUser, e.getByteDiff) )
      .keyBy( "user" )
      .timeWindow(Time.seconds(5))
      .sum("edits")

    result.print

    // execute program
    env.execute("Wikipedia Edit Monitoring")
  }

  /** Data type for words with count */
  case class UserWithEdits(user: String, edits: Long)
}

我也想知道如何使用自定义AggregateFunction进行实现。

更新

我遵循了此文档:AggregateFunction,但有以下问题:

在版本1.3的界面AggregateFunction的源代码中,您会看到add确实返回void

void add(IN value, ACC accumulator);

但是对于版本1.4 AggregateFunction,正在返回:

ACC add(IN value, ACC accumulator);

我应该如何处理?

我使用的Flink版本是1.3.2,此版本的文档没有AggregateFunction,但尚未发布版本1.4。

enter image description here

2 个答案:

答案 0 :(得分:3)

您会找到AggregateFunction in the Flink 1.4 docs的一些文档,包括一个示例。

1.3.2中包含的版本仅限于与可变累加器类型一起使用,其中add操作修改累加器。这已经fixed for Flink 1.4,但尚未发布。

答案 1 :(得分:3)

import org.apache.flink.api.common.functions.AggregateFunction
import org.apache.flink.streaming.api.scala._
import org.apache.flink.api.common.serialization.SimpleStringSchema
import org.apache.flink.streaming.api.scala.{DataStream, StreamExecutionEnvironment}
import org.apache.flink.streaming.api.windowing.time.Time
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaProducer08
import org.apache.flink.streaming.connectors.wikiedits.{WikipediaEditEvent, WikipediaEditsSource}

class SumAggregate extends AggregateFunction[WikipediaEditEvent, (String, Int), (String, Int)] {
  override def createAccumulator() = ("", 0)

  override def add(value: WikipediaEditEvent, accumulator: (String, Int)) = (value.getUser, value.getByteDiff + accumulator._2)

  override def getResult(accumulator: (String, Int)) = accumulator

  override def merge(a: (String, Int), b: (String, Int)) = (a._1, a._2 + b._2)
}

object WikipediaAnalysis extends App {
  val see: StreamExecutionEnvironment = StreamExecutionEnvironment.getExecutionEnvironment
  val edits: DataStream[WikipediaEditEvent] = see.addSource(new WikipediaEditsSource())

  val result: DataStream[(String, Int)] = edits
    .keyBy(_.getUser)
    .timeWindow(Time.seconds(5))
    .aggregate(new SumAggregate)
//    .fold(("", 0))((acc, event) => (event.getUser, acc._2 + event.getByteDiff))
  result.print()

  result.map(_.toString()).addSink(new FlinkKafkaProducer08[String]("localhost:9092", "wiki-result", new SimpleStringSchema()))
  see.execute("Wikipedia User Edit Volume")
}