合并两个没有公共列的数据框

时间:2017-11-04 02:40:58

标签: python loops dataframe multiple-columns

我正在将一个“状态”列添加到现有数据框中,该数据框不与我的其他数据框共享一个公共列。因此,我需要将zipcodes转换为状态(例如,00704将是PR)以加载到具有新列状态的数据帧中。

reviewers = pd.read_csv('reviewers.txt', 
                        sep='|',
                        header=None,
                        names=['user id','age','gender','occupation','zipcode'])
reviewers['state'] = ""

  user id  age gender       occupation    zipcode    state
0          1   24      M     technician   85711      
1          2   53      F          other   94043      


zipcodes = pd.read_csv('zipcodes.txt',
                  usecols = [1,4],
                  converters={'Zipcode':str})
      Zipcode State
0       00704    PR
1       00704    PR
2       00704    PR
3       00704    PR
4       00704    PR


zipcodes1 = zipcodes.set_index('Zipcode') ###Setting the index to zipcode
dfzip = zipcodes1
print(dfzip)


        State
Zipcode      
00704      PR
00704      PR
00704      PR



zips = (pd.Series(dfzip.values.tolist(), index = zipcodes1['State'].index))

states = []
for zipcode in reviewers['Zipcode']:
    if re.search('[a-zA-Z]+', zipcode):
        append.states['canada']
    elif zipcode in zips.index:
        append.states(zips['zipcode'])
    else:
        append.states('unkown')

我不确定我的循环是否正确。我必须按美国邮政编码(数字),加拿大邮政编码(按字母顺序排列),然后我们定义为(未知)的其他邮政编码对邮政编码进行排序。如果您需要数据文件,请告诉我。

2 个答案:

答案 0 :(得分:0)

你的循环需要修复:

states = []
for zipcode in reviewers['Zipcode']:
    if re.match(r'\w+', zipcode):
        states.extend('Canada')
    elif zipcode in zips.index:
        states.extend(zips[zipcode])
    else:
        states.extend('Unknown')

另外,假设您希望将状态列表插回到数据帧中。在这种情况下,您不需要for循环。您可以在数据框上使用pandas apply来获取新列:

def findState(code):
       res='Unknown'
       if re.match(r'\w+', code):
            res='Canada'
        elif code in zips.index:
            res=zips[code]              
        return res

reviewers['State'] = reviewers['Zipcode'].apply(findstate)

答案 1 :(得分:0)

使用:

#remove duplicates and create Series for mapping
zips = zipcodes.drop_duplicates().set_index('Zipcode')['State']

#get mask for canada zip codes
#if possible small letters change to [a-zA-Z]+
mask = reviewers['zipcode'].str.match('[A-Z]+') 
#new column by mask
reviewers['state'] = np.where(mask, 'canada', reviewers['zipcode'].map(zips))
#NaNs are replaced 
reviewers['state'] = reviewers['state'].fillna('unknown')

使用apply的循环版本:

import re 

def f(code):
    res="unknown"
    #if possible small letter change to [a-zA-Z]+
    if re.match('[A-Z]+', code):
        res='canada'
    elif code in zips.index:
        res=zips[code]
    return res

reviewers['State1'] = reviewers['zipcode'].apply(f)
print (reviewers.tail(10))  
     user id  age gender     occupation zipcode state State1
933      934   61      M       engineer   22902    VA     VA
934      935   42      M         doctor   66221    KS     KS
935      936   24      M          other   32789    FL     FL
936      937   48      M       educator   98072    WA     WA
937      938   38      F     technician   55038    MN     MN
938      939   26      F        student   33319    FL     FL
939      940   32      M  administrator   02215    MA     MA
940      941   20      M        student   97229    OR     OR
941      942   48      F      librarian   78209    TX     TX
942      943   22      M        student   77841    TX     TX

#test if same output
print ((reviewers['State1'] == reviewers['state']).all())
True

<强>计时

In [56]: %%timeit
    ...: mask = reviewers['zipcode'].str.match('[A-Z]+') 
    ...: reviewers['state'] = np.where(mask, 'canada', reviewers['zipcode'].map(zips))
    ...: reviewers['state'] = reviewers['state'].fillna('unknown')
    ...: 
100 loops, best of 3: 2.08 ms per loop

In [57]: %%timeit
    ...: reviewers['State1'] = reviewers['zipcode'].apply(f)
    ...: 
100 loops, best of 3: 17 ms per loop