我正在编程一个基本的神经网络,并希望将其绘制为图片。为此我创建了我需要的所有节点和边缘。
for l, j in zip(self.layers, range(len(self.layers))):
for n, i in zip(l.neurons, range(len(l.neurons))):
fixed_positions[n.identifier] = (j, i)
for l in self.layers:
for n in l.neurons:
for c, w in zip(n.inconnections, n.inconnectionweights):
g.add_edge(n.identifier, c.identifier)
fixed_nodes = fixed_positions.keys()
pos = nx.spring_layout(g, pos=fixed_positions, fixed=fixed_nodes)
蓝点(想象它们在所有边缘上)是我想在边缘添加标签的地方,但我不知道该怎么做。它应该适用于任何合理的净大小,即它也适用于resprective层中的4,3和2个神经元。
答案 0 :(得分:7)
以下是在networkx中绘制边缘标签的示例,希望它能为您提供帮助。
import networkx as nx
edges=[['A','B'],['B','C'],['B','D']]
G=nx.Graph()
G.add_edges_from(edges)
pos = nx.spring_layout(G)
plt.figure()
nx.draw(G,pos,edge_color='black',width=1,linewidths=1,\
node_size=500,node_color='pink',alpha=0.9,\
labels={node:node for node in G.nodes()})
nx.draw_networkx_edge_labels(G,pos,edge_labels={('A','B'):'AB',\
('B','C'):'BC',('B','D'):'BD'},font_color='red')
plt.axis('off')
plt.show()
答案 1 :(得分:3)
您可以使用G
的edge属性
nx.draw(G, with_labels=True, node_color='skyblue', edge_cmap=plt.cm.Blues, pos = pos)
edge_labels = nx.get_edge_attributes(G,'edge') # key is edge, pls check for your case
formatted_edge_labels = {(elem[0],elem[1]):edge_labels[elem] for elem in edge_labels} # use this to modify the tuple keyed dict if it has > 2 elements, else ignore
nx.draw_networkx_edge_labels(G,pos,edge_labels=formatted_edge_labels,font_color='red')
plt.show()
答案 2 :(得分:2)
您可以使用 draw_networkx_edge_labels(edge_labels) 在边缘之间绘制标签。
edge_labels
,则使用边的属性。edge_labels
应该是一个由边缘二元组文本标签键控的字典。仅绘制字典中键的标签。要遍历图的边,可以使用 G.edges。
G.edges
返回 (node1, node2)
的列表,其中 node1
和 node2
是边的两个节点。G.edges(data=True)
返回 (node1, node2, ddict)
的列表,其中 ddict
是边属性字典。G.edges(data=attr)
返回 (node1, node2, ddict[attr])
import matplotlib.pyplot as plt
import networkx as nx
G = nx.DiGraph()
G.add_edges_from([(1, 2), (1, 3), (2, 3)])
pos = nx.spring_layout(G)
nx.draw_networkx(G, pos)
edge_labels = dict([((n1, n2), f'{n1}->{n2}')
for n1, n2 in G.edges])
nx.draw_networkx_edge_labels(G, pos, edge_labels=edge_labels)
plt.show()
用G.edges(data=True)
import matplotlib.pyplot as plt
import networkx as nx
G = nx.Graph()
G.add_edge(1, 2, weight=3)
G.add_edge(2, 3, weight=5)
pos = nx.spring_layout(G)
nx.draw(G, pos, with_labels=True)
edge_labels = dict([((n1, n2), d['weight'])
for n1, n2, d in G.edges(data=True)])
nx.draw_networkx_edge_labels(G, pos, edge_labels=edge_labels, label_pos=0.9,
font_color='red', font_size=16, font_weight='bold')
plt.show()