我试图编写一个通过PWM控制强度的LED控制器。然而,我的问题是,我甚至无法进入循环部分,它似乎在我宣布我的课时挂起。我已经尝试检查我班上的任何功能是否导致问题,但由于我甚至无法循环,所以课堂上肯定有问题。我已经写完了这个课程并将其放入一个名为LED的图书馆。
代码有点长,但现在是:
#ifndef LED_H
#define LED_H
#include <LiquidCrystal.h>
#include <Button.h>
#include <EEPROM.h>
#include <TimeLib.h>
#include <PWM.h>
class LED
{
public:
LED();
int read_encoder(); //Reads rotary encoder
void clearLCD();
void setAllLed();
void printLCD();
void setOneLed(int);
int setLed(int, // current time in minutes
int, // pin for this channel of LEDs
int, // start time for this channel of LEDs
int, // photoperiod for this channel of LEDs
int, // fade duration for this channel of LEDs
int, // max value for this channel
bool // true if the channel is inverted
);
void menuWizard();
int subMenuWizard(int, int, bool, bool);
void displayMainMenu();
void printMins(int, bool);
void printHMS(byte,byte,byte);
long EEPROMReadlong(long);
void EEPROMWritelong(int, long);
bool pressSelect();
bool pressBack();
void rotateCheck(int&, int, int);
//variables for the LED channels
int minCounter = 0; // counter that resets at midnight.
int oldMinCounter = 0; // counter that resets at midnight.
int ledPins[5]={2,3,5,6,7};
int ledVal[5]={0,0,0,0,0};
// Variables making use of EEPROM memory:
int variablesList[20];
bool invertedLEDs[5]={false,false,false,false,false};
//Backlight Variables
unsigned long backlightIdleMs = 0;
private:
};
#endif // LED_H
这是.cpp文件:
#define LCD_RS 35 // RS pin
#define LCD_ENABLE 34 // enable pin
#define LCD_DATA4 33 // d4 pin
#define LCD_DATA5 32 // d5 pin
#define LCD_DATA6 31 // d6 pin
#define LCD_DATA7 30 // d7 pin
#define LCD_BACKLIGHT 9 // backlight pin
// Backlight config
#define BACKLIGHT_DIM 10 // PWM value for backlight at idle
#define BACKLIGHT_ON 70 // PWM value for backlight when on
#define BACKLIGHT_IDLE_MS 10000 // Backlight idle delay
#define ENC_A 14
#define ENC_B 15
#define ENC_PORT PINC
#include <LiquidCrystal.h>
#include <Button.h>
#include <EEPROM.h>
#include <TimeLib.h>
#include <PWM.h>
#include "LED.h"
LiquidCrystal lcd(LCD_RS, LCD_ENABLE, LCD_DATA4, LCD_DATA5, LCD_DATA6, LCD_DATA7);
Button goBack=Button(12, PULLDOWN);
Button select=Button(13, PULLDOWN);
LED::LED()
{
InitTimersSafe();
pinMode(LCD_BACKLIGHT, OUTPUT);
lcd.begin(16, 2);
digitalWrite(LCD_BACKLIGHT, HIGH);
lcd.print("sEx LED, V1");
clearLCD();
delay(5000);
analogWrite(LCD_BACKLIGHT, BACKLIGHT_DIM);
if (variablesList[0] > 1440 || variablesList[0] < 0) {
variablesList[0] = 720; // minute to start this channel.
variablesList[1] = 400; // photoperiod in minutes for this channel.
variablesList[2] = 100; // max intensity for this channel, as a percentage
variablesList[3] = 100; // duration of the fade on and off for sunrise and sunset for
// this channel.
variablesList[4] = 720;
variablesList[5] = 400;
variablesList[6] = 100;
variablesList[7] = 100;
variablesList[8] = 720;
variablesList[9] = 400;
variablesList[10] = 100;
variablesList[11] = 100;
variablesList[12] = 720;
variablesList[13] = 400;
variablesList[14] = 100;
variablesList[15] = 100;
variablesList[16] = 720;
variablesList[17] = 400;
variablesList[18] = 100;
variablesList[19] = 100;
}
else {
variablesList[0] = EEPROMReadlong(0); // minute to start this channel.
variablesList[1] = EEPROMReadlong(4); // photoperiod in minutes for this channel.
variablesList[2] = EEPROMReadlong(8); // max intensity for this channel, as a percentage
variablesList[3] = EEPROMReadlong(12); // duration of the fade on and off for sunrise and sunset for
// this channel.
variablesList[4] = EEPROMReadlong(16);
variablesList[5] = EEPROMReadlong(20);
variablesList[6] = EEPROMReadlong(24);
variablesList[7] = EEPROMReadlong(28);
variablesList[8] = EEPROMReadlong(32);
variablesList[9] = EEPROMReadlong(36);
variablesList[10] = EEPROMReadlong(40);
variablesList[11] = EEPROMReadlong(44);
variablesList[12] = EEPROMReadlong(48);
variablesList[13] = EEPROMReadlong(52);
variablesList[14] = EEPROMReadlong(56);
variablesList[15] = EEPROMReadlong(60);
variablesList[16] = EEPROMReadlong(64);
variablesList[17] = EEPROMReadlong(68);
variablesList[18] = EEPROMReadlong(72);
variablesList[19] = EEPROMReadlong(76);
}
}
void LED::printLCD(){lcd.print("test");clearLCD();delay(2000);lcd.print("testing");clearLCD();}
bool LED::pressSelect(){
if (select.uniquePress()){return 1;}
else {return 0;}
}
bool LED::pressBack(){
if (goBack.uniquePress()){return 1;}
else {return 0;}
}
void LED::clearLCD(){
lcd.clear();
}
void LED::displayMainMenu(){
oldMinCounter = minCounter;
minCounter = hour() * 60 + minute();
for (int i=0;i<17;i=i+4){
if (variablesList[i+3] > variablesList[i+1] / 2 && variablesList[i+1] > 0) {
variablesList[i+3] = variablesList[i+1] / 2;
}
if (variablesList[i+3] < 1) {
variablesList[i+3] = 1;
}
}
//check & set any time functions
if (minCounter > oldMinCounter) {
lcd.clear();
}
lcd.setCursor(0, 0);
printHMS(hour(), minute(), second());
lcd.setCursor(0, 1);
lcd.print(ledVal[0]);
lcd.setCursor(4, 1);
lcd.print(ledVal[1]);
lcd.setCursor(8, 1);
lcd.print(ledVal[2]);
}
int LED::read_encoder()
{
static int enc_states[] = {0,-1,1,0,1,0,0,-1,-1,0,0,1,0,1,-1,0};
static int old_AB = 0;
/**/
old_AB <<= 2; //remember previous state
old_AB |= ( ENC_PORT & 0x03 ); //add current state
return ( enc_states[( old_AB & 0x0f )]);
}
int LED::setLed(int mins, // current time in minutes
int ledPin, // pin for this channel of LEDs
int start, // start time for this channel of LEDs
int period, // photoperiod for this channel of LEDs
int fade, // fade duration for this channel of LEDs
int ledMax, // max value for this channel
bool inverted // true if the channel is inverted
) {
int val = 0;
//fade up
if (mins > start || mins <= start + fade) {
val = map(mins - start, 0, fade, 0, ledMax);
}
//fade down
if (mins > start + period - fade && mins <= start + period) {
val = map(mins - (start + period - fade), 0, fade, ledMax, 0);
}
//off or post-midnight run.
if (mins <= start || mins > start + period) {
if ((start + period) % 1440 < start && (start + period) % 1440 > mins )
{
val = map((start + period - mins) % 1440, 0, fade, 0, ledMax);
}
else
val = 0;
}
if (val > ledMax) {
val = ledMax;
}
if (val < 0) {
val = 0;
}
if (inverted) {
pwmWrite(ledPin, map(val, 0, 100, 255, 0));
}
else {
pwmWrite(ledPin, map(val, 0, 100, 0, 255));
}
return val;
}
void LED::printMins(int mins, //time in minutes to print
bool ampm //print am/pm?
) {
int hr = (mins % 1440) / 60;
int mn = mins % 60;
if (hr < 10) {
lcd.print(" ");
}
lcd.print(hr);
lcd.print(":");
if (mn < 10) {
lcd.print("0");
}
lcd.print(mn);
}
void LED::printHMS (byte hr,
byte mn,
byte sec //time to print
)
{
if (hr < 10) {
lcd.print(" ");
}
lcd.print(hr, DEC);
lcd.print(":");
if (mn < 10) {
lcd.print("0");
}
lcd.print(mn, DEC);
lcd.print(":");
if (sec < 10) {
lcd.print("0");
}
lcd.print(sec, DEC);
}
//EEPROM write functions
long LED::EEPROMReadlong(long address)
{
//Read the 4 bytes from the eeprom memory.
long four = EEPROM.read(address);
long three = EEPROM.read(address + 1);
long two = EEPROM.read(address + 2);
long one = EEPROM.read(address + 3);
//Return the recomposed long by using bitshift.
return ((four << 0) & 0xFF) + ((three << 8) & 0xFFFF) + ((two << 16) & 0xFFFFFF) + ((one << 24) & 0xFFFFFFFF);
}
void LED::EEPROMWritelong(int address, long value)
{
//Decomposition from a long to 4 bytes by using bitshift.
//One = Most significant -> Four = Least significant byte
byte four = (value & 0xFF);
byte three = ((value >> 8) & 0xFF);
byte two = ((value >> 16) & 0xFF);
byte one = ((value >> 24) & 0xFF);
//Write the 4 bytes into the eeprom memory.
EEPROM.write(address, four);
EEPROM.write(address + 1, three);
EEPROM.write(address + 2, two);
EEPROM.write(address + 3, one);
}
void LED::setAllLed(){
int j=0;
for (int i=0;i<17;i=i+4){
int a=i;int b=i+1;int c=i+2;int d=i+3;
ledVal[j] = setLed(minCounter, ledPins[j], variablesList[a], variablesList[b], variablesList[c], variablesList[d], invertedLEDs[j]);
j++;
}
}
void LED::setOneLed(int channel){
int j=channel;
int i=0;
if(channel==1){i+=4;}
if(channel==2){i+=8;}
if(channel==3){i+=12;}
if(channel==4){i+=16;}
int a=i;int b=i+1;int c=i+2;int d=i+3;
ledVal[j] = setLed(minCounter, ledPins[j], variablesList[a], variablesList[b], variablesList[c], variablesList[d], invertedLEDs[j]);
}
void LED::rotateCheck(int& menuCount, int minMenu, int maxMenu){
while (menuCount!=0){
int rotateCount;
rotateCount=read_encoder();
if (rotateCount) {
menuCount+=rotateCount;
if (menuCount<minMenu){menuCount==maxMenu;}
if (menuCount>maxMenu){menuCount==minMenu;}
clearLCD();
}
}
}
void LED::menuWizard(){
int menuCount=1;
String menuList[6]={"Time","LED Max","LED Start","LED End","Fade Length","Ch Override"};
String channelList[5]={"1","2","3","4","5"};
while (menuCount!=0){
rotateCheck(menuCount,1,6);
lcd.setCursor(0, 0);
lcd.print(menuList[menuCount-1]);
clearLCD();
if (goBack.isPressed()){
menuCount=0;
}
if (pressSelect() && menuCount!=0){
int timeMode=1;
int channelCount=0;
bool goBack=0;
while (goBack!=1){
if (menuCount==1){
if (pressSelect()){
timeMode++;
if (timeMode>2){timeMode=1;}
}
int timeAdjDetect=read_encoder();
if (timeMode==1){
if (timeAdjDetect){
if (timeAdjDetect>0){adjustTime(SECS_PER_HOUR);}
if (timeAdjDetect<0) {adjustTime(-SECS_PER_HOUR);}
}
lcd.setCursor(0, 0);
lcd.print("Set Time: Hrs");
lcd.setCursor(0, 1);
printHMS(hour(), minute(), second());
}
else{
if (timeAdjDetect){
if (timeAdjDetect>0){adjustTime(SECS_PER_MIN);}
if (timeAdjDetect<0) {adjustTime(-SECS_PER_MIN);}
}
lcd.setCursor(0, 0);
lcd.print("Set Time: Mins");
lcd.setCursor(0, 1);
printHMS(hour(), minute(), second());
}
clearLCD();
}
else{
rotateCheck(channelCount,0,4);
lcd.setCursor(0,0);
lcd.print("Select Channel");
lcd.setCursor(0,1);
lcd.print(channelList[channelCount]);
clearLCD();
if (pressSelect()){
if (menuCount==2){
subMenuWizard(2,channelCount,0,0);
}
if (menuCount==3){
subMenuWizard(0,channelCount,1,0);
}
if (menuCount==4){
subMenuWizard(1,channelCount,1,1);
}
if (menuCount==5){
subMenuWizard(3,channelCount,1,0);
}
}
}
if (pressBack()){goBack=1;}
}
}
}
for (int i=0;i<20;i++){
int j=0;
EEPROMWritelong(j, variablesList[i]);
j+=4;
}
}
int LED::subMenuWizard(int i, int channel, bool time, bool truetime){
if (channel==1){i=i+4;}
if (channel==2){i=i+8;}
if (channel==3){i=i+12;}
if (channel==4){i=i+16;}
while (!pressBack()){
if (time==0){
rotateCheck(variablesList[i],0,100);
lcd.setCursor(0,0);
lcd.print("Set:");
lcd.setCursor(0,1);
lcd.print(variablesList[i]);
setOneLed(channel);
clearLCD();
}
else{
if (truetime){
rotateCheck(variablesList[i],0,1439);
lcd.setCursor(0,0);
lcd.print("Set:");
lcd.setCursor(0,1);
printMins(variablesList[i] + variablesList[i-1], true);
clearLCD();
}
else {
rotateCheck(variablesList[i],0,1439);
lcd.setCursor(0,0);
lcd.print("Set:");
lcd.setCursor(0,1);
printMins(variablesList[i], true);
clearLCD();
}
setOneLed(channel);
}
}
}
最后是.ino文件:
#define LCD_BACKLIGHT 9 // backlight pin
#define BACKLIGHT_DIM 10 // PWM value for backlight at idle
#define BACKLIGHT_ON 70 // PWM value for backlight when on
#define BACKLIGHT_IDLE_MS 10000 // Backlight idle delay
#include <LED.h>
//Initialize buttons
int buttonCount = 1;
LED main;
void setup() {
};
void loop() {
/* main.setAllLed();
//turn the backlight off and reset the menu if the idle time has elapsed
if (main.backlightIdleMs + BACKLIGHT_IDLE_MS < millis() && main.backlightIdleMs > 0 ) {
analogWrite(LCD_BACKLIGHT, BACKLIGHT_DIM);
main.clearLCD();
main.backlightIdleMs = 0;
}
if (buttonCount == 1) {
main.displayMainMenu();
}
if (buttonCount == 2) {
main.menuWizard();
buttonCount = 1;
}
*/
main.printLCD();
};
另外,在循环部分,我已经评论了要运行的代码部分,并且我正在运行一个函数来测试我是否已成功进入循环印刷&#34;测试&#34;在屏幕上。
我正在使用Mega。
答案 0 :(得分:1)
LED::LED()
{
InitTimersSafe();
pinMode(LCD_BACKLIGHT, OUTPUT);
lcd.begin(16, 2);
digitalWrite(LCD_BACKLIGHT, HIGH);
lcd.print("sEx LED, V1");
clearLCD();
delay(5000);
analogWrite(LCD_BACKLIGHT, BACKLIGHT_DIM);
您必须了解此构造函数在创建对象时运行,并且可能在从main运行init()之前运行。因此硬件在那时还没有准备好,pinMode和digitalWrite以及东西都没有用。液晶代码无法真正在那里工作,我打赌这是悬挂东西的部分。
构造函数应该只执行初始化变量之类的操作。任何依赖于硬件的代码都应该进入begin()或init()或者一旦安全地执行这些操作就可以从setup中调用的任何方法。 Serial对象是另一个必须执行此操作的类的一个很好的示例。