例如,在matlab中计算沿着nd数组的维度的每个二进制位的平均值,沿着4d数组的暗淡4平均每10个元素
x = reshape(1:30*30*20*300,30,30,20,300);
n = 10;
m = size(x,4)/10;
y = nan(30,30,20,m);
for ii = 1 : m
y(:,:,:,ii) = mean(x(:,:,:,(1:n)+(ii-1)*n),4);
end
看起来有点傻。我认为必须有更好的方法来平均垃圾箱?
此外,是否可以使脚本适用于一般情况,即,对数组进行仲裁,并沿着仲裁调暗以达到平均值?
答案 0 :(得分:1)
对于问题的第二部分,您可以使用:
x = reshape(1:30*30*20*300,30,30,20,300);
dim = 4;
n = 10;
m = size(x,dim)/10;
y = nan(30,30,20,m);
idx1 = repmat({':'},1,ndims(x));
idx2 = repmat({':'},1,ndims(x));
for ii = 1 : m
idx1{dim} = ii;
idx2{dim} = (1:n)+(ii-1)*n;
y(idx1{:}) = mean(x(idx2{:}),dim);
end
对于问题的第一部分,这里是使用cumsum
和diff
的替代方法,但它可能不比循环解决方案更好:
function y = slicedmean(x,slice_size,dim)
s = cumsum(x,dim);
idx1 = repmat({':'},1,ndims(x));
idx2 = repmat({':'},1,ndims(x));
idx1{dim} = slice_size;
idx2{dim} = slice_size:slice_size:size(x,dim);
y = cat(dim,s(idx1{:}),diff(s(idx2{:}),[],dim))/slice_size;
end
答案 1 :(得分:1)
这是一个使用accumarray
函数的通用解决方案。我没有测试它有多快。可能还有一些改进的余地。
基本上,accumarray将x中的值按照您的问题的自定义索引矩阵分组
x = reshape(1:30*30*20*300,30,30,20,300);
s = size(x);
% parameters for averaging
dimAv = 4;
n = 10;
% get linear index
ix = (1:numel(x))';
% transform them to a matrix of index per dimension
% this is a customized version of ind2sub
pcum = [1 cumprod(s(1:end-1))];
sub = zeros(numel(ix),numel(s));
for i = numel(s):-1:1,
ixtmp = rem(ix-1, pcum(i)) + 1;
sub(:,i) = (ix - ixtmp)/pcum(i) + 1;
ix = ixtmp;
end
% correct index for the given dimension
sub(:,dimAv) = floor((sub(:,dimAv)-1)/n)+1;
% run the accumarray to compute the average
sout = s;
sout(dimAv) = ceil(sout(dimAv)/n);
y = accumarray(sub,x(:), sout, @mean);
如果您需要更快且内存效率更高的操作,则必须编写自己的mex函数。我想,这应该不会那么困难!