使用操作按钮在闪亮的R中添加具有现有数据框的新行

时间:2017-11-02 20:14:11

标签: r shiny shinydashboard

我正在构建一个闪亮的表单,它将从textInput字段中获取数据,并将这些输入与文本文件(将通过文件输入上传)组合在一起,并在主面板中显示输出。有一个动作按钮,用于第一次更新数据(从文本输入中获取数据并与处理后的文本文件合并),我添加了另一个操作按钮,用于添加新数据(此目的是添加新数据以添加新数据)数据集与现有数据一样,新的数据集将由文件输入上传)。下面给出了样本数据集,它是纯文本格式的文件。此样本数据集可被视为第二个文本文件。 样本数据:

#         AREA     ADC-MEAN  ADC-STD DEV  ADC-MIN    ADC-MAX    ADC-MED  
 1      12.0000  0.000644667 1.96669e-005  0.000606000  0.000671000  0.000644000
 2      12.0000  0.000610250 1.43154e-005  0.000577000  0.000624000  0.000617000

我根据场景编写了shinnyApp。我能够通过合并和输出作为表来更新文本输入和文本文件输出。但无法将一组新数据添加为行。脚本如下:

library(shiny)
library(ggplot2)
library(xlsx)
library(xlsxjars)
library(rJava)
library(shinythemes)

# Define UI -----------
# ---------------------

ui <- fluidPage(theme = shinytheme("sandstone"),

                # header
                headerPanel("DTI post analysis conversion"),

                sidebarLayout(
                  # sidebar for form
                  sidebarPanel(
                    h3("Information",""),
                    textInput("ani_id", "Patient ID",""),
                    textInput("scan_id", "Scan ID",""),
                    textInput("Tech_id", "Tech Id",""),
                    textInput("Age_weeks", "Age weeks",""),

                    fileInput("textfile", "Upload the text file"),
                    actionButton("update", "Update"),
                    helpText("Click to insert the data "),
                    br(),
                    actionButton("addEntry", "Add New Data"),
                    helpText("Click to insert new data "),
                    br(),
                    downloadButton("downloadData", "Download"),
                    helpText("Click for download the data (.csv) ")
                  ),

                  # output for viewing
                  mainPanel(

                    DT::dataTableOutput("tableDT") 

                  )   
                )
)


# Define server logic ------
# --------------------------

server <- function(input, output) {

  # process the textinput
  Frontal_Cortex_table <- eventReactive(input$update,{  


    # creating table

    aniRoi2 <- data.frame(Animal_ID = rep(input$ani_id,2), 
                          Scan_ID = rep(input$scan_id,2), 
                          Tech_ID = rep(input$Tech_id,2), 
                          Age_weeks = rep(input$Age_weeks,2), 
                          stringsAsFactors = FALSE)

    return(aniRoi2)
  })

  # process the text file and download

  textdata <- eventReactive(input$update,{
    file1 <- input$textfile
    if(is.null(file1)){return()} 
    a <- read.table(file= file1$datapath, 
                    sep="\t",
                    fill=FALSE, 
                    strip.white=TRUE)[1:2,]

    # Split the text file and shape as column
    af <- as.character(a)
    af1 <- matrix(unlist(strsplit(af, split=" +")), ncol=7, byrow =TRUE)
    ad <- data.frame(af1[1:2,3:7])
    colnames(ad)<- c("ADC_MEAN", "ADC_STD", "ADC_MIN", "ADC_MAX", "ADC_MED")

    return(ad)
  })

  # merge two function as data.frame
  mytable2 <-reactive({

    dm = cbind.data.frame(Frontal_Cortex_table(), textdata())

  })

  # add new row (?)

  addData <- observeEvent(input$addEntry, {
    mytable2 <- isolate({
      newLine <- reactive({cbind.data.frame(Frontal_Cortex_table(), textdata())})
      rbind.data.frame(mytable2,newLine)
    })
  })

  # output the data as table    
  output$tableDT <- DT::renderDataTable(
    mytable2()
  )

  # download the file
  output$downloadData <- downloadHandler(
    filename = function() {
      paste("DTI", "csv", sep = ".")
    },
    content = function(file) {
      write.csv(mytable2(), file, row.names = FALSE)
    }
  )

}

# Run the app ----------
# ----------------------

shinyApp(ui = ui, server = server)

我收到错误消息,指出:

Warning: Error in [[: object of type 'closure' is not subsettable Stack trace (innermost first):
    73: rbind.data.frame
    66: isolate
    65: observeEventHandler [/Users/rahatjahan/Dropbox/Database dev/DTIApp/Ask questions.R#95]
     1: runApp

我知道,这是一篇很长的帖子,但试着解释并提供一切,这样就不会有任何混淆。

您的意见和建议将不胜感激。

2 个答案:

答案 0 :(得分:3)

问题解决了,每次迭代都会添加新行。 新的文本数据集:

#         AREA     ADC-MEAN  ADC-STD DEV  ADC-MIN    ADC-MAX    ADC-MED  
 1      12.0000  0.000644667 1.96669e-005  0.000606000  0.000671000  0.000644000
 2      12.0000  0.000610250 1.43154e-005  0.000577000  0.000624000  0.000617000
 3     0.000000     0.000000     0.000000     0.000000     0.000000     0.000000
 4     0.000000     0.000000     0.000000     0.000000     0.000000     0.000000
 5     0.000000     0.000000     0.000000     0.000000     0.000000     0.000000
 6     0.000000     0.000000     0.000000     0.000000     0.000000     0.000000
 7     0.000000     0.000000     0.000000     0.000000     0.000000     0.000000
 8     0.000000     0.000000     0.000000     0.000000     0.000000     0.000000
 9     0.000000     0.000000     0.000000     0.000000     0.000000     0.000000
 10     0.000000     0.000000     0.000000     0.000000     0.000000     0.000000
#         AREA     FA-MEAN  FA-STD DEV     FA-MIN      FA-MAX        FA-MED  
 1      12.0000     0.233833    0.0171773     0.201000     0.262000     0.239000
 2      12.0000     0.247417    0.0135275     0.220000     0.270000     0.248000
 3     0.000000     0.000000     0.000000     0.000000     0.000000     0.000000
 4     0.000000     0.000000     0.000000     0.000000     0.000000     0.000000
 5     0.000000     0.000000     0.000000     0.000000     0.000000     0.000000
 6     0.000000     0.000000     0.000000     0.000000     0.000000     0.000000
 7     0.000000     0.000000     0.000000     0.000000     0.000000     0.000000
 8     0.000000     0.000000     0.000000     0.000000     0.000000     0.000000
 9     0.000000     0.000000     0.000000     0.000000     0.000000     0.000000
 10     0.000000     0.000000     0.000000     0.000000     0.000000     0.000000
ADC-MEAN
  0.000644667
  0.000610250
     0.000000
     0.000000
     0.000000
     0.000000
     0.000000
     0.000000
     0.000000
     0.000000
ADC-STD DEV
 1.96669e-005
 1.43154e-005
     0.000000
     0.000000
     0.000000
     0.000000
     0.000000
     0.000000
     0.000000
     0.000000
FA-MEAN
     0.233833
     0.247417
     0.000000
     0.000000
     0.000000
     0.000000
     0.000000
     0.000000
     0.000000
     0.000000
FA-STD DEV
    0.0171773
    0.0135275
     0.000000
     0.000000
     0.000000
     0.000000
     0.000000
     0.000000
     0.000000
     0.000000

修改后的代码

library(shiny)
library(ggplot2)
library(xlsx)
library(xlsxjars)
library(rJava)
library(shinythemes)

# Define UI -----------
# ---------------------

ui <- fluidPage(theme = shinytheme("sandstone"),

                # header
                headerPanel("DTI post analysis conversion"),

                sidebarLayout(
                  # sidebar for form
                  sidebarPanel(
                    h3("Information",""),
                    textInput("ani_id", "Patient ID",""),
                    textInput("scan_id", "Scan ID",""),
                    textInput("Tech_id", "Tech Id",""),
                    textInput("Age_weeks", "Age weeks",""),

                    fileInput("textfile", "Upload the text file"),
                    actionButton("update", "Insert 1st Data Set"),
                    helpText("Click to insert the data "),
                    br(),
                    fileInput("anothertextfile", "Upload another Text file"),
                    actionButton("addEntry", "Add New Data"),
                    helpText("Click to insert new data "),
                    br(),
                    actionButton("combine", "Combine the data sets"),
                    downloadButton("downloadData", "Download"),
                    helpText("Click for download the data (.csv) ")
                  ),

                  # output for viewing
                  mainPanel(

                    DT::dataTableOutput("tableDT"),
                    DT::dataTableOutput("tableDT2") 


                  )   
                )
)


# Define server logic ------
# --------------------------

server <- function(input, output) {

  # process the textinput
  Frontal_Cortex_table <- reactive({  


    # creating table

    aniRoi2 <- data.frame(Animal_ID = rep(input$ani_id,2), 
                          Scan_ID = rep(input$scan_id,2), 
                          Tech_ID = rep(input$Tech_id,2), 
                          Age_weeks = rep(input$Age_weeks,2), 
                          stringsAsFactors = FALSE)

    return(aniRoi2)
  })

  # process the text file and download

  textdata <- reactive(
    {
    file1 <- input$textfile
    if(is.null(file1)){return()} 
    #read.table(file=file1$datapath, sep=input$sep, header = input$header, stringsAsFactors = input$stringAsFactors)
    a <- read.table(file= file1$datapath, 
                    sep="\t",
                    fill=FALSE, 
                    strip.white=TRUE)[1:20,]

    # Split the text file and shape as column
    af <- as.character(a)
    #class(af)
    #af
    #nrow(a)
    af1 <- matrix(unlist(strsplit(af, split=" +")), ncol=7, byrow =TRUE)
    # typeof(af1)
    # af1
    ad <- data.frame(af1[1:2,3:7], af1[11:12, 3:7])

    colnames(ad)<- c("ADC_MEAN", "ADC_STD", "ADC_MIN", "ADC_MAX", "ADC_MED", 
                     "FA_MEAN", "FA_STD", "FA_MIN", "FA_MAX", "FA_MED")


    return(ad)
  })


  # merge two function as data.frame
  mytable2 <-eventReactive(input$update,{

     dm <<- cbind.data.frame(Frontal_Cortex_table(), textdata())

  })

  # add new row (?)

  addData1 <- eventReactive(input$addEntry, {
      newLine <<- cbind.data.frame(Frontal_Cortex_table(), textdata())
  })


  addData <- eventReactive(input$addEntry, {
    dm <<- rbind.data.frame(mytable2(),addData1())
  })

  addData2 <- eventReactive(input$addEntry, {
    dm <<- rbind.data.frame(dm,addData1())
  })

  # output as data table      
  output$tableDT <- DT::renderDataTable(
    mytable2()
  )

# the combined data set with added row  
  output$tableDT2 <- DT::renderDataTable(
    addData2()
  )
  # download the file
  output$downloadData <- downloadHandler(
    filename = function() {
      paste("DTI", "csv", sep = ".")
    },
    content = function(file) {
      write.csv(mytable2(), file, row.names = FALSE)
    }
  )

}

# Run the app ----------
# ----------------------

shinyApp(ui = ui, server = server)

希望这会有所帮助。

答案 1 :(得分:0)

如果有人在 2021 年以后遇到这个问题,请查看 editData 包。它不会直接为您做这件事,但它会处理您可能正在处理的许多其他问题。

对于我的项目,我不得不查看一些函数的源代码并根据我的情况进行调整,但它给了我我正在寻找的解决方案。源代码还有一部分是关于使编辑后的数据可下载,这可能就是这个问题的答案。我自己没试过,但不明白为什么它不起作用

一切顺利!