我已经编写了一个有效的二进制搜索树,并希望构建一些JUnit测试来配合它。我正在处理三个:一个用于查找最大值(InOrder遍历),一个用于删除此最大值,另一个用于检查二进制树是否平衡。我已经写了前两个,但不能弄清楚如何确定最后一个测试 - 检查平衡。我很欣赏一些指导,因为我觉得我已经忽略了一些东西。
我的测试方法:
public class BSTreePreLabTest {
@Test
public void testFindMax() {
BSTree<Integer> tree = new BSTree<Integer>();
tree.addElement(15);
tree.addElement(16);
tree.addElement(17);
tree.addElement(18);
tree.addElement(19);
tree.addElement(20);
assertEquals("20", tree.findMax().toString());
}
@Test
public void testRemoveMax() {
BSTree<Integer> tree = new BSTree<Integer>();
tree.addElement(15);
tree.addElement(16);
tree.addElement(17);
tree.addElement(18);
tree.addElement(19);
tree.addElement(20);
tree.removeMax();
assertEquals("Inorder traversal: [15, 16, 17, 18, 19]", tree.toString());
}
我的主要BinarySearchTree方法,供参考,如果需要:
public class BSTree<T> {
private BSTreeNode<T> root = null;
private int count;
public BSTree(T element) {
root = new BSTreeNode<T>(element);
count = 1;
}
public BSTree() {
root = null;
count = 0;
}
public void addElement(T element) {
if (isEmpty()) {
root = new BSTreeNode<T>(element);
}
else {
BSTreeNode<T> current = root;
BSTreeNode<T> previous = null;
Comparable<T> comparableElement = (Comparable<T>) element;
while (current != null) {
if (comparableElement.compareTo(current.getElement()) < 0) {
previous = current;
current = current.getLeft();
}
else {
previous = current;
current = current.getRight();
}
}
BSTreeNode<T> newNode = new BSTreeNode<T>(element);
if (comparableElement.compareTo(previous.getElement()) < 0)
previous.setLeft(newNode);
else
previous.setRight(newNode);
}
count++;
}
public boolean isEmpty() {
return root == null;
}
public int size() {
return count;
}
public T find(T targetElement) throws ElementNotFoundException {
BSTreeNode<T> current = findNode(targetElement, root);
if (current == null)
throw new ElementNotFoundException("BSTree");
return (current.getElement());
}
private BSTreeNode<T> findNode(T targetElement, BSTreeNode<T> next) {
if (next == null)
return null;
if (next.getElement().equals(targetElement))
return next;
BSTreeNode<T> temp = findNode(targetElement, next.getLeft());
if (temp == null)
temp = findNode(targetElement, next.getRight());
return temp;
}
public T removeElement(T targetElement) throws ElementNotFoundException {
T result = null;
if (isEmpty())
throw new ElementNotFoundException("BSTree");
else {
BSTreeNode<T> parent = null;
if (((Comparable<T>) targetElement).equals(root.getElement())) {
result = root.getElement();
BSTreeNode<T> temp = replacement(root);
if (temp == null)
root = null;
else {
root.setElement(temp.getElement());
root.setRight(temp.getRight());
root.setLeft(temp.getLeft());
}
} else {
parent = root;
if (((Comparable) targetElement).compareTo(root.getElement()) < 0)
result = removeElement(targetElement, root.getLeft(), parent);
else
result = removeElement(targetElement, root.getRight(), parent);
}
}
count--;
return result;
}
private T removeElement(T targetElement, BSTreeNode<T> node,
BSTreeNode<T> parent) throws ElementNotFoundException {
T result = null;
if (node == null)
throw new ElementNotFoundException("BSTree");
else {
if (((Comparable<T>) targetElement).equals(node.getElement())) {
result = node.getElement();
BSTreeNode<T> temp = replacement(node);
if (parent.getRight() == node)
parent.setRight(temp);
else
parent.setLeft(temp);
} else {
parent = node;
if (((Comparable) targetElement).compareTo(node.getElement()) < 0)
result = removeElement(targetElement, node.getLeft(),
parent);
else
result = removeElement(targetElement, node.getRight(),
parent);
}
}
return result;
}
private BSTreeNode<T> replacement(BSTreeNode<T> node) {
BSTreeNode<T> result = null;
if ((node.getLeft() == null) && (node.getRight() == null))
result = null;
else if ((node.getLeft() != null) && (node.getRight() == null))
result = node.getLeft();
else if ((node.getLeft() == null) && (node.getRight() != null))
result = node.getRight();
else {
BSTreeNode<T> current = node.getRight();
BSTreeNode<T> parent = node;
while (current.getLeft() != null) {
parent = current;
current = current.getLeft();
}
current.setLeft(node.getLeft());
if (node.getRight() != current) {
parent.setLeft(current.getRight());
current.setRight(node.getRight());
}
result = current;
}
return result;
}
public String toString()
{
ArrayList<T> temp = new ArrayList<T>();
inOrder(root, temp);
return "Inorder traversal: " + temp.toString();
}
public Iterator<T> iterator()
{
return iteratorInOrder();
}
public Iterator<T> iteratorInOrder()
{
ArrayList<T> tempList = new ArrayList<T>();
inOrder(root, tempList);
return tempList.iterator();
}
public T findMax(){
T result = null;
if (isEmpty())
throw new ElementNotFoundException ("binary tree");
else {
BSTreeNode<T> current = root;
while (current.getRight() != null)
current = current.getRight();
result = current.getElement();
}
return result;
}
public T removeMax(){
T result = null;
if (isEmpty())
throw new ElementNotFoundException("binary tree");
else
{
if (root.getRight() == null)
{
result = root.getElement();
root = root.getLeft();
}
else
{
BSTreeNode<T> parent = root;
BSTreeNode<T> current = root.getRight();
while (current.getRight() != null)
{
parent = current;
current = current.getRight();
}
result = current.getElement();
parent.setRight(current.getLeft());
}
count--;
}
return result;
}
protected void inOrder(BSTreeNode<T> node, ArrayList<T> tempList) {
if (node != null) {
inOrder(node.getLeft(), tempList);
tempList.add(node.getElement());
inOrder(node.getRight(), tempList);
}
}
}
答案 0 :(得分:1)
您可以编写一个函数来查找左右子树的高度
int height(Node node)
{
if (node == null)
return 0;
return 1 + Math.max(height(node.left), height(node.right));
}
然后,您可以编写另一种方法来检查树是否平衡
boolean isBalanced(Node node)
{
int lh;
int rh;
if (node == null)
return true;
lh = height(node.left);
rh = height(node.right);
if (Math.abs(lh - rh) <= 1
&& isBalanced(node.left)
&& isBalanced(node.right)) {
return true;
}
return false;
}
然后,您可以编写一个JUnit测试用例来测试您的isBalanced()。
我希望这有帮助!