ggplot:部分数据帧

时间:2017-11-02 07:51:42

标签: r dataframe ggplot2

我正在绘制一些线条和一些点,所有这些都基于相同的数据帧df。以下代码给出了以下图像:

ggplot() +
  geom_line(data = df, aes(
    x = x,
    y = y,
    color = vol,
    linetype = fl,
    group = interaction(vol, fl, regression)
  )) +
  geom_point(data = df[df$regression == 0,], aes(
    x = x,
    y = y,
    color = vol,
    group = interaction(vol, fl, regression)
  ))

enter image description here

我想在情节中添加facet_grid(.~df$fl),但这会给我一个错误:

Error in `$<-.data.frame`(`*tmp*`, "PANEL", value = c(1L, 1L, 1L, 1L,  : 
  replacement has 5184 rows, data has 384

那是因为我没有将整个数据框提供给geom_point,因为当我用df[df$regression == 0,]替换df时它会起作用。是否有另一种方法根据条件绘制数据帧的部分数据,以便facet_grid工作?还是其他任何解决方法?我想要的是这张图片:

enter image description here

但明显的线条应该只是线条,而不是线条和点。对于数据点,df $ regression为1,应该在行上,0表示单点。以下是重现问题的一些数据:

structure(list(x = c(21.8181818181818, 25.8585858585859, 29.8989898989899, 
33.9393939393939, 37.979797979798, 20.6060606060606, 24.6464646464646, 
28.6868686868687, 32.7272727272727, 36.7676767676768, 20, 23.4343434343434, 
27.4747474747475, 31.5151515151515, 35.5555555555556, 39.5959595959596, 
22.2222222222222, 26.2626262626263, 30.3030303030303, 34.3434343434343, 
38.3838383838384, 21.010101010101, 25.0505050505051, 29.0909090909091, 
33.1313131313131, 37.1717171717172, 30, 23.8383838383838, 27.8787878787879, 
31.9191919191919, 35.959595959596, 40, 22.6262626262626, 26.6666666666667, 
30.7070707070707, 34.7474747474747, 38.7878787878788, 21.4141414141414, 
25.4545454545455, 29.4949494949495, 33.5353535353535, 37.5757575757576, 
20.2020202020202, 24.2424242424242, 28.2828282828283, 32.3232323232323, 
36.3636363636364, 20, 23.030303030303, 27.0707070707071, 31.1111111111111, 
35.1515151515151, 39.1919191919192, 21.8181818181818, 25.8585858585859, 
29.8989898989899, 33.9393939393939, 37.979797979798, 20.6060606060606, 
24.6464646464646, 28.6868686868687, 32.7272727272727, 36.7676767676768, 
20, 23.4343434343434, 27.4747474747475, 31.5151515151515, 35.5555555555556, 
39.5959595959596, 22.2222222222222, 26.2626262626263, 30.3030303030303, 
34.3434343434343, 38.3838383838384, 21.010101010101, 25.0505050505051, 
29.0909090909091, 33.1313131313131, 37.1717171717172, 30, 23.8383838383838, 
27.8787878787879, 31.9191919191919, 35.959595959596, 40, 22.6262626262626, 
26.6666666666667, 30.7070707070707, 34.7474747474747, 38.7878787878788, 
20.8080808080808, 24.8484848484848, 28.8888888888889, 32.9292929292929, 
36.969696969697, 40, 23.030303030303, 27.0707070707071, 31.1111111111111, 
35.1515151515151, 39.1919191919192, 21.2121212121212, 25.2525252525253, 
29.2929292929293, 33.3333333333333, 37.3737373737374, 40, 23.4343434343434, 
27.4747474747475, 31.5151515151515, 35.5555555555556, 39.5959595959596, 
21.6161616161616, 25.6565656565657, 29.6969696969697, 33.7373737373737, 
37.7777777777778, 30, 23.8383838383838, 27.8787878787879, 31.9191919191919, 
35.959595959596, 40, 22.020202020202, 26.0606060606061, 30.1010101010101, 
34.1414141414141, 38.1818181818182, 20.2020202020202, 24.2424242424242, 
28.2828282828283, 32.3232323232323, 36.3636363636364, 20, 22.4242424242424, 
26.4646464646465, 30.5050505050505, 34.5454545454545, 38.5858585858586, 
20.6060606060606, 24.6464646464646, 28.6868686868687, 32.7272727272727, 
36.7676767676768, 20, 22.8282828282828, 26.8686868686869, 30.9090909090909, 
34.9494949494949, 38.989898989899, 21.010101010101, 25.0505050505051, 
29.0909090909091, 33.1313131313131, 37.1717171717172, 30, 23.2323232323232, 
27.2727272727273, 31.3131313131313, 35.3535353535353, 39.3939393939394, 
21.4141414141414, 25.4545454545455, 29.4949494949495, 33.5353535353535, 
37.5757575757576, 20, 23.6363636363636, 27.6767676767677, 31.7171717171717, 
35.7575757575758, 39.7979797979798, 21.8181818181818, 25.8585858585859, 
29.8989898989899, 33.9393939393939, 37.979797979798, 20, 24.040404040404, 
28.0808080808081, 32.1212121212121, 36.1616161616162, 30, 22.2222222222222, 
26.2626262626263, 30.3030303030303, 34.3434343434343, 38.3838383838384, 
20.4040404040404, 24.4444444444444, 28.4848484848485, 32.5252525252525, 
36.5656565656566, 40, 22.6262626262626, 26.6666666666667, 30.7070707070707, 
34.7474747474747, 38.7878787878788, 20.8080808080808, 24.8484848484848, 
28.8888888888889, 32.9292929292929, 36.969696969697, 40, 23.030303030303, 
27.0707070707071, 31.1111111111111, 35.1515151515151, 39.1919191919192, 
21.2121212121212, 25.2525252525253, 29.2929292929293, 33.3333333333333, 
37.3737373737374, 40, 23.4343434343434, 27.4747474747475, 31.5151515151515, 
35.5555555555556, 39.5959595959596, 21.6161616161616, 25.6565656565657, 
29.6969696969697, 33.7373737373737, 37.7777777777778, 30, 23.8383838383838, 
27.8787878787879, 31.9191919191919, 35.959595959596, 40, 22.020202020202, 
26.0606060606061, 30.1010101010101, 34.1414141414141, 38.1818181818182, 
20.2020202020202, 24.2424242424242, 28.2828282828283, 32.3232323232323, 
36.3636363636364, 20, 22.4242424242424, 26.4646464646465, 30.5050505050505, 
34.5454545454545, 38.5858585858586, 20.6060606060606, 24.6464646464646, 
28.6868686868687, 32.7272727272727, 36.7676767676768, 20, 22.8282828282828, 
26.8686868686869, 30.9090909090909, 34.9494949494949, 38.989898989899
), y = c(2402.17113149172, 2326.67767889428, 2249.28090796479, 
2169.81152278375, 2088.0729350503, 2451.62179558938, 2377.31681158879, 
2301.20896759456, 2223.14430366718, 2142.94509445625, 2703.2312, 
2427.15161047861, 2352.26405786859, 2275.52489755763, 2196.7728081398, 
2115.82102952098, 2658.97840642144, 2589.21549779863, 2517.99848248377, 
2445.22158654038, 2370.76526008232, 2704.82418367347, 2635.9796724372, 
2565.74512458376, 2494.02275021559, 2420.70246390177, 2482.4497, 
2682.12359774242, 2612.82790529873, 2542.11096130036, 2469.87112018466, 
2395.99373260483, 2898.20847550235, 2832.94651669293, 2766.52511160699, 
2698.87291517526, 2629.91078724516, 2941.19652268186, 2876.67282455246, 
2811.03352622772, 2744.21189868937, 2676.13413488111, 2983.71375325192, 
2919.901294074, 2855.01433591383, 2788.99035509675, 2721.76038396585, 
2472.0298, 2434.54409660818, 2359.83366717134, 2283.28655141027, 
2204.7436973396, 2124.02113404933, 2665.87843663052, 2596.2555852616, 
2525.18853319909, 2452.57275878781, 2378.29020014193, 2711.63562752842, 
2642.92515758129, 2572.83382839411, 2501.26497127279, 2428.10982557011, 
2703.2312, 2688.97857365125, 2619.81985496457, 2549.24941423717, 
2477.16678988587, 2403.45873536739, 2904.67344219492, 2839.52377207193, 
2773.22140317777, 2705.69570949827, 2636.86838305261, 2947.58991549333, 
2883.17435143132, 2817.64950767341, 2750.94930958195, 2683.00070436299, 
2482.4497, 2926.32991199127, 2861.55311852909, 2795.64583010852, 
2728.53976459766, 2660.15932299533, 2011.99018094703, 1925.25661696433, 
1835.45562148539, 1742.19442714025, 1644.98631716418, 2080.89326911667, 
1996.4267081104, 1909.16099878643, 1818.76222115969, 1724.822550671, 
2124.229, 2065.72436746474, 1980.77077206266, 1892.96191544129, 
1801.95192874995, 1707.31710092386, 2336.32983625141, 2259.1826920489, 
2179.98573987259, 2098.54617330676, 2014.63818859246, 2402.3396, 
2322.44189622084, 2244.93497772191, 2165.34532302833, 2083.47465489522, 
1999.0903214211, 2384.42176864079, 2308.49075356406, 2230.61842781556, 
2150.62952826792, 2068.32008494138, 2362.8997, 2559.22704192421, 
2487.36282465051, 2413.88990120824, 2338.6821147806, 2261.59551948919, 
2616.90133511869, 2546.26982883627, 2474.12167998239, 2400.34305908638, 
2324.80481389428, 2673.62831318029, 2604.1619859418, 2533.26247083338, 
2460.82663075012, 2386.73804746187, 1987.7103, 2078.23952353261, 
1993.6882328872, 1906.32809094831, 1815.82312517697, 1721.76278696748, 
2347.73569251424, 2270.88110308982, 2192.00320012253, 2110.91352963703, 
2027.3917228529, 2507.1035, 2333.89916395139, 2256.68933539746, 
2177.42398925063, 2095.90937535374, 2011.91850992887, 2395.65364446047, 
2320.0002102629, 2242.42963040288, 2162.77044778796, 2080.82340334047, 
2187.0991, 2569.87497878267, 2498.24213680806, 2425.01816919557, 
2350.07931602571, 2273.28451701712, 2627.37164266354, 2556.95863868843, 
2485.04490318795, 2411.51868077011, 2336.25329652339, 2626.9592, 
2614.67093678957, 2543.99267925352, 2471.79435898689, 2397.96169850714, 
2322.36500999186, 2282.18882321874, 2203.61645643609, 2122.86157032689, 
2039.70889475723, 1953.90439129073, 2344.97579090749, 2268.05065057491, 
2189.09583045677, 2107.9218347768, 2024.3069949106, 2083.8975, 
2331.12686280529, 2253.84539337501, 2174.50186671526, 2092.90144921852, 
2008.81580172329, 2580.18666089212, 2508.77622935717, 2435.79143985093, 
2361.11079971522, 2284.595974169, 2003.0742, 2567.30961855544, 
2495.62119220384, 2422.33742953699, 2347.3339983968, 2270.46914998684, 
2624.84896271978, 2554.38345853233, 2482.41341090688, 2408.82656907134, 
2333.49566672921, 2119.4548, 2788.0470586771, 2720.79948273642, 
2652.26838545401, 2582.36864142275, 2511.00506520563, 2842.16180112291, 
2775.90703551915, 2708.43192189751, 2639.65848298286, 2569.49987901459, 
2523.356, 2830.19795405817, 2763.72665666639, 2696.0214286838, 
2627.0027789399, 2556.58210416037, 2342.55191716592, 2265.56469009293, 
2186.54216868198, 2105.29393624976, 2021.59717460222, 2695.1526, 
2519.58538726481, 2446.84412430582, 2372.42623360974, 2296.19610903806, 
2217.99838688298, 2577.93224201055, 2506.47332379102, 2433.43640312753, 
2358.69949613376, 2282.12367785202, 2635.29532829028, 2565.04663184666, 
2493.30908867896, 2419.97248173738, 2344.91197132943, 2510.0027, 
2798.02832313364, 2730.9664828845, 2662.6331149815, 2592.94447202605, 
2521.80698115501, 2851.99920029621, 2785.92124765962, 2718.63395794578, 
2650.06057186702, 2580.11566688657, 2624.2874, 2840.06674475584, 
2773.77418035867, 2706.25890470618, 2637.44267802766, 2567.238354942
), fl = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
2L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L), .Label = c("Hakufluid, dreckig", 
"Hakufluid, frisch", "Wasser"), class = "factor"), vol = c(0, 
0, 0, 0, 0, 3.4459344419063, 3.4459344419063, 3.4459344419063, 
3.4459344419063, 3.4459344419063, 34.459344419063, 6.8918688838126, 
6.8918688838126, 6.8918688838126, 6.8918688838126, 6.8918688838126, 
34.459344419063, 34.459344419063, 34.459344419063, 34.459344419063, 
34.459344419063, 37.9052788609693, 37.9052788609693, 37.9052788609693, 
37.9052788609693, 37.9052788609693, 41.3512133028756, 41.3512133028756, 
41.3512133028756, 41.3512133028756, 41.3512133028756, 41.3512133028756, 
68.9171477447819, 68.9171477447819, 68.9171477447819, 68.9171477447819, 
68.9171477447819, 72.3630821866882, 72.3630821866882, 72.3630821866882, 
72.3630821866882, 72.3630821866882, 75.8090166285945, 75.8090166285945, 
75.8090166285945, 75.8090166285945, 75.8090166285945, 3.4459344419063, 
6.89186888381261, 6.89186888381261, 6.89186888381261, 6.89186888381261, 
6.89186888381261, 34.459344419063, 34.459344419063, 34.459344419063, 
34.459344419063, 34.459344419063, 37.9052788609693, 37.9052788609693, 
37.9052788609693, 37.9052788609693, 37.9052788609693, 34.459344419063, 
41.3512133028756, 41.3512133028756, 41.3512133028756, 41.3512133028756, 
41.3512133028756, 68.9171477447819, 68.9171477447819, 68.9171477447819, 
68.9171477447819, 68.9171477447819, 72.3630821866882, 72.3630821866882, 
72.3630821866882, 72.3630821866882, 72.3630821866882, 41.3512133028756, 
75.8090166285945, 75.8090166285945, 75.8090166285945, 75.8090166285945, 
75.8090166285945, 0, 0, 0, 0, 0, 3.4459344419063, 3.4459344419063, 
3.4459344419063, 3.4459344419063, 3.4459344419063, 37.9052788609693, 
6.8918688838126, 6.8918688838126, 6.8918688838126, 6.8918688838126, 
6.8918688838126, 34.459344419063, 34.459344419063, 34.459344419063, 
34.459344419063, 34.459344419063, 68.9171477447819, 37.9052788609693, 
37.9052788609693, 37.9052788609693, 37.9052788609693, 37.9052788609693, 
41.3512133028756, 41.3512133028756, 41.3512133028756, 41.3512133028756, 
41.3512133028756, 75.8090166285945, 68.9171477447819, 68.9171477447819, 
68.9171477447819, 68.9171477447819, 68.9171477447819, 72.3630821866882, 
72.3630821866882, 72.3630821866882, 72.3630821866882, 72.3630821866882, 
75.8090166285945, 75.8090166285945, 75.8090166285945, 75.8090166285945, 
75.8090166285945, 3.4459344419063, 6.89186888381261, 6.89186888381261, 
6.89186888381261, 6.89186888381261, 6.89186888381261, 34.459344419063, 
34.459344419063, 34.459344419063, 34.459344419063, 34.459344419063, 
34.459344419063, 37.9052788609693, 37.9052788609693, 37.9052788609693, 
37.9052788609693, 37.9052788609693, 41.3512133028756, 41.3512133028756, 
41.3512133028756, 41.3512133028756, 41.3512133028756, 41.3512133028756, 
68.9171477447819, 68.9171477447819, 68.9171477447819, 68.9171477447819, 
68.9171477447819, 72.3630821866882, 72.3630821866882, 72.3630821866882, 
72.3630821866882, 72.3630821866882, 72.3630821866882, 75.8090166285945, 
75.8090166285945, 75.8090166285945, 75.8090166285945, 75.8090166285945, 
0, 0, 0, 0, 0, 3.4459344419063, 3.4459344419063, 3.4459344419063, 
3.4459344419063, 3.4459344419063, 0, 6.8918688838126, 6.8918688838126, 
6.8918688838126, 6.8918688838126, 6.8918688838126, 34.459344419063, 
34.459344419063, 34.459344419063, 34.459344419063, 34.459344419063, 
6.8918688838126, 37.9052788609693, 37.9052788609693, 37.9052788609693, 
37.9052788609693, 37.9052788609693, 41.3512133028756, 41.3512133028756, 
41.3512133028756, 41.3512133028756, 41.3512133028756, 37.9052788609693, 
68.9171477447819, 68.9171477447819, 68.9171477447819, 68.9171477447819, 
68.9171477447819, 72.3630821866882, 72.3630821866882, 72.3630821866882, 
72.3630821866882, 72.3630821866882, 68.9171477447819, 75.8090166285945, 
75.8090166285945, 75.8090166285945, 75.8090166285945, 75.8090166285945, 
6.89186888381261, 6.89186888381261, 6.89186888381261, 6.89186888381261, 
6.89186888381261, 75.8090166285945, 34.459344419063, 34.459344419063, 
34.459344419063, 34.459344419063, 34.459344419063, 37.9052788609693, 
37.9052788609693, 37.9052788609693, 37.9052788609693, 37.9052788609693, 
41.3512133028756, 41.3512133028756, 41.3512133028756, 41.3512133028756, 
41.3512133028756, 3.4459344419063, 68.9171477447819, 68.9171477447819, 
68.9171477447819, 68.9171477447819, 68.9171477447819, 72.3630821866882, 
72.3630821866882, 72.3630821866882, 72.3630821866882, 72.3630821866882, 
34.459344419063, 75.8090166285945, 75.8090166285945, 75.8090166285945, 
75.8090166285945, 75.8090166285945), regression = c(1, 1, 1, 
1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 
1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 
1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 
1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 
1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 
1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 
1, 1, 1, 1)), .Names = c("x", "y", "fl", "vol", "regression"), row.names = c(10L, 
30L, 50L, 70L, 90L, 110L, 130L, 150L, 170L, 190L, 210L, 230L, 
250L, 270L, 290L, 310L, 330L, 350L, 370L, 390L, 410L, 430L, 450L, 
470L, 490L, 510L, 530L, 550L, 570L, 590L, 610L, 630L, 650L, 670L, 
690L, 710L, 730L, 750L, 770L, 790L, 810L, 830L, 850L, 870L, 890L, 
910L, 930L, 950L, 970L, 990L, 1010L, 1030L, 1050L, 1070L, 1090L, 
1110L, 1130L, 1150L, 1170L, 1190L, 1210L, 1230L, 1250L, 1270L, 
1290L, 1310L, 1330L, 1350L, 1370L, 1390L, 1410L, 1430L, 1450L, 
1470L, 1490L, 1510L, 1530L, 1550L, 1570L, 1590L, 1610L, 1630L, 
1650L, 1670L, 1690L, 1710L, 1730L, 1750L, 1770L, 1790L, 1810L, 
1830L, 1850L, 1870L, 1890L, 1910L, 1930L, 1950L, 1970L, 1990L, 
2010L, 2030L, 2050L, 2070L, 2090L, 2110L, 2130L, 2150L, 2170L, 
2190L, 2210L, 2230L, 2250L, 2270L, 2290L, 2310L, 2330L, 2350L, 
2370L, 2390L, 2410L, 2430L, 2450L, 2470L, 2490L, 2510L, 2530L, 
2550L, 2570L, 2590L, 2610L, 2630L, 2650L, 2670L, 2690L, 2710L, 
2730L, 2750L, 2770L, 2790L, 2810L, 2830L, 2850L, 2870L, 2890L, 
2910L, 2930L, 2950L, 2970L, 2990L, 3010L, 3030L, 3050L, 3070L, 
3090L, 3110L, 3130L, 3150L, 3170L, 3190L, 3210L, 3230L, 3250L, 
3270L, 3290L, 3310L, 3330L, 3350L, 3370L, 3390L, 3410L, 3430L, 
3450L, 3470L, 3490L, 3510L, 3530L, 3550L, 3570L, 3590L, 3610L, 
3630L, 3650L, 3670L, 3690L, 3710L, 3730L, 3750L, 3770L, 3790L, 
3810L, 3830L, 3850L, 3870L, 3890L, 3910L, 3930L, 3950L, 3970L, 
3990L, 4010L, 4030L, 4050L, 4070L, 4090L, 4110L, 4130L, 4150L, 
4170L, 4190L, 4210L, 4230L, 4250L, 4270L, 4290L, 4310L, 4330L, 
4350L, 4370L, 4390L, 4410L, 4430L, 4450L, 4470L, 4490L, 4510L, 
4530L, 4550L, 4570L, 4590L, 4610L, 4630L, 4650L, 4670L, 4690L, 
4710L, 4730L, 4750L, 4770L, 4790L, 4810L, 4830L, 4850L, 4870L, 
4890L, 4910L, 4930L, 4950L, 4970L, 4990L, 5010L, 5030L, 5050L, 
5070L, 5090L, 5110L, 5130L, 5150L, 5170L), class = "data.frame")

1 个答案:

答案 0 :(得分:2)

您的问题有一个简单的解决方案。在facet_grid()中,您使用. ~ df$fl这是不必要的,因为ggplot有一个data参数。相反,只需使用. ~ fl

ggplot() +
  geom_line(data = df, aes(
    x = x,
    y = y,
    color = vol,
    linetype = fl,
    group = interaction(vol, fl, regression)
  )) +
  geom_point(data = df[df$regression == 0,], aes(
    x = x,
    y = y,
    color = vol,
    group = interaction(vol, fl, regression)
  )) + 
  facet_grid(. ~ fl)

结果如下:

output