即使在删除对象

时间:2017-11-01 19:58:42

标签: python memory-leaks pack pyaudio

我正在使用PyAudio来检测音频源的活动。我正在通常死亡的流上从每个音频事件创建WAV文件。使用memory_profiler我注意到record_to_file()方法中的pack方法通常使用的内存量是删除数据对象所能恢复的内存量的4倍。此代码取自Detect & Record Audio in Python

from sys import byteorder
import sys
from array import array
import struct

import gc

import pyaudio
import wave
import subprocess
import objgraph
from memory_profiler import profile
from guppy import hpy

THRESHOLD = 5000
CHUNK_SIZE = 1024
FORMAT = pyaudio.paInt16
RATE = 44100

def is_silent(snd_data):
    "Returns 'True' if below the 'silent' threshold"
    return max(snd_data) < THRESHOLD


def normalize(snd_data):
    "Average the volume out"
    MAXIMUM = 16384
    times = float(MAXIMUM)/max(abs(i) for i in snd_data)

    r = array('h')
    for i in snd_data:
        r.append(int(i*times))
    return r


def trim(snd_data):
    "Trim the blank spots at the start and end"
    def _trim(snd_data):
        snd_started = False
        r = array('h')

        for i in snd_data:
            if not snd_started and abs(i)>THRESHOLD:
                snd_started = True
                r.append(i)

            elif snd_started:
                r.append(i)
        return r

    # Trim to the left
    snd_data = _trim(snd_data)

    # Trim to the right
    snd_data.reverse()
    snd_data = _trim(snd_data)
    snd_data.reverse()
    return snd_data


def add_silence(snd_data, seconds):
    "Add silence to the start and end of 'snd_data' of length 'seconds' (float)"
    r = array('h', [0 for i in xrange(int(seconds*RATE))])
    r.extend(snd_data)
    r.extend([0 for i in xrange(int(seconds*RATE))])
    return r


def record():
    """g
    Record a word or words from the microphone and 
    return the data as an array of signed shorts.

    Normalizes the audio, trims silence from the 
    start and end, and pads with 0.5 seconds of 
    blank sound to make sure VLC et al can play 
    it without getting chopped off.
    """
    p = pyaudio.PyAudio()
    stream = p.open(format=FORMAT, channels=1, rate=RATE,
        input=True, output=True,
        frames_per_buffer=CHUNK_SIZE)

    num_silent = 0
    snd_started = False

    r = array('h')

    while 1:
        # little endian, signed short
        snd_data = array('h', stream.read(CHUNK_SIZE))
        if byteorder == 'big':
            snd_data.byteswap()
        r.extend(snd_data)

        silent = is_silent(snd_data)

        if silent and snd_started:
            num_silent += 1
        elif not silent and not snd_started:
            snd_started = True

        if snd_started and num_silent > 400:
            break

    sample_width = p.get_sample_size(FORMAT)
    stream.stop_stream()
    stream.close()
    p.terminate()

    #r = normalize(r)
    r = trim(r)
    r = add_silence(r, 0.5)

    return sample_width, r

@profile
def record_to_file(path):
    "Records from the microphone and outputs the resulting data to 'path'"
    sample_width, data = record()

    data = struct.pack('<' + ('h'*len(data)), *data)
    print(sys.getsizeof(data))
    wf = wave.open(path, 'wb')
    wf.setnchannels(1)
    wf.setsampwidth(sample_width)
    wf.setframerate(RATE)
    wf.writeframes(data)
    wf.close()
    del data
    gc.collect()


if __name__ == '__main__':
    count = 1
    h = hpy()
    f = open('heap.txt','w')
    objgraph.show_growth(limit=3) 
    while(1):
        filename = 'demo' + str(count) + '.wav'
        print("please speak a word into the microphone")
        record_to_file(filename)
        print("done - result written to {0}".format(filename))
        cmd = 'cd "C:\\Users\\user\\Desktop\\Raudio" & ffmpeg\\bin\\ffmpeg -i {0} -acodec libmp3lame {1}.mp3'.format(filename, filename)
        "subprocess.call(cmd, shell=True)"
        count += 1
        objgraph.show_growth()
        print h.heap()

以下是内存分析器模块的一次输出迭代:

Line #    Mem usage    Increment   Line Contents
================================================
   117     19.6 MiB      0.0 MiB   @profile
   118                             def record_to_file(path):
   119                                 "Records from the microphone and outputs the resulting data to 'path'"
   120     22.4 MiB      2.8 MiB       sample_width, data = record()
   125     31.3 MiB      8.9 MiB       data = struct.pack('<' + ('h'*len(data)), *data)
   126     31.3 MiB      0.0 MiB       print(sys.getsizeof(data))
   127     31.3 MiB      0.0 MiB       wf = wave.open(path, 'wb')
   128     31.3 MiB      0.0 MiB       wf.setnchannels(1)
   129     31.3 MiB      0.0 MiB       wf.setsampwidth(sample_width)
   130     31.4 MiB      0.0 MiB       wf.setframerate(RATE)
   131     31.4 MiB      0.0 MiB       wf.writeframes(data)
   132     31.4 MiB      0.0 MiB       wf.close()
   133     30.4 MiB     -0.9 MiB       del data
   134     27.9 MiB     -2.5 MiB       gc.collect()

使用VS调试进程,我在系统内存中看到了非常大量的“h”字符,这可能就是泄漏发生的原因。任何帮助将不胜感激

1 个答案:

答案 0 :(得分:3)

struct类保留项目的缓存以便更快地访问。清除struct缓存的唯一方法是调用struct._clearcache()方法。可以找到使用此示例here

警告!这是_方法,可能随时更改。有关这些类型的方法,请参阅here

有关于此内存泄漏的讨论&#39;在python论坛herehere上。