假设我有一个如下所示的数据框:
library(dplyr)
library(tibble)
df <- tibble(t = 1:3, a = c(4, 6, 11), b = 1:3, c = c(1, 3, 2))
df
# A tibble: 3 x 4
# t a b c
# <int> <dbl> <int> <dbl>
# 1 1 4 1 1
# 2 2 6 2 3
# 3 3 11 3 2
我想计算一个新列d
,以便
d(0)= a
d(t)= d(t-1)+ b(t-1)+ c(t-1)
我可以通过for循环(痛苦地)做到这一点:
for_loop <- add_column(df, d = 0)
for (i in 1:nrow(df)) {
if(i == 1) {
for_loop[i,]$d <- for_loop[i,]$a
}
else {
for_loop[i,]$d <- for_loop[i-1,]$d + for_loop[i-1,]$b + for_loop[i-1,]$c
}
}
for_loop
# A tibble: 3 x 5
# t a b c d
# <int> <dbl> <int> <dbl> <dbl>
# 1 1 4 1 1 4
# 2 2 6 2 3 6
# 3 3 11 3 2 11
但我想用dplyr来做。尝试简单的ifelse似乎不起作用,因为计算是矢量化的,因此使用d
的旧值:
tidy <- add_column(df, d = 0) %>%
mutate(tidy, d = ifelse(row_number(d)==1, a, lag(d) + lag(b) + lag(c)))
tidy
# A tibble: 3 x 5
# t a b c d
# <int> <dbl> <int> <dbl> <dbl>
# 1 1 4 1 1 4
# 2 2 6 2 3 2
# 3 3 11 3 2 5
如何使用之前的d
值使用dplyr计算d
的新值?
答案 0 :(得分:1)
您可以在滞后if (element instanceof Expense) {
Log.d(YOUR_LOG_TAG,"The if condition not executed")
Expense expense = (Expense) element;
Intent intent = new Intent(MainActivity.this, ExpenseDetailActivity.class);
intent.putExtra(ExpenseDetailActivity.EXPENSE_KEY, expense);
startActivity(intent);
}
上执行cumsum
,然后将初始值b+c
添加到结果中:
a[1]
为了对其进行矢量化,您需要从公式中删除之前的df %>% mutate(d = a[1] + cumsum(lag(b + c, default = 0)))
# A tibble: 3 x 5
# t a b c d
# <int> <dbl> <int> <dbl> <dbl>
#1 1 4 1 1 4
#2 2 6 2 3 6
#3 3 11 3 2 11
( d [t-1] ),如下所示:
d