我需要在相同的数据上交叉验证几个glmer模型,所以我已经完成了这个功能(我对预先存在的函数不感兴趣)。我想将一个任意的glmer模型作为唯一的参数传递给我的函数。可悲的是,我无法弄清楚如何做到这一点,并且interwebz不会告诉我。
理想情况下,我想做类似的事情:
model = glmer(y ~ x + (1|z), data = train_folds, family = "binomial"
model2 = glmer(y ~ x2 + (1|z), data = train_folds, family = "binomial"
然后拨打cross_validation_function(model)
和cross_validation_function(model2)
。函数中的训练数据称为train_fold。
但是,我怀疑我需要使用reformulate
以不同的方式传递模型公式。
以下是我的功能示例。该项目旨在从行为特征预测自闭症(ASD)。数据变量为da
。
library(pacman)
p_load(tidyverse, stringr, lmerTest, MuMIn, psych, corrgram, ModelMetrics,
caret, boot)
cross_validation_function <- function(model){
#creating folds
participants = unique(da$participant)
folds <- createFolds(participants, 10)
cross_val <- sapply(seq_along(folds), function(x) {
train_folds = filter(da, !(as.numeric(participant) %in% folds[[x]]))
predict_fold = filter(da, as.numeric(participant) %in% folds[[x]])
#model to be tested should be passed as an argument here
train_model <- model
predict_fold <- predict_fold %>%
mutate(predictions_perc = predict(train_model, predict_fold, allow.new.levels = T),
predictions_perc = inv.logit(predictions_perc),
predictions = ifelse(predictions_perc > 0.5, "ASD","control"))
conf_mat <- caret::confusionMatrix(data = predict_fold$predictions, reference = predict_fold$diagnosis, positive = "ASD")
accuracy <- conf_mat$overall[1]
sensitivity <- conf_mat$byClass[1]
specificity <- conf_mat$byClass[2]
fixed_ef <- fixef(train_model)
output <- c(accuracy, sensitivity, specificity, fixed_ef)
})
cross_df <- t(cross_val)
return(cross_df)
}
从注释开发的解决方案:使用as.formula
字符串可以转换为公式,可以通过以下方式作为参数传递给我的函数:
cross_validation_function <- function(model_formula){
...
train_model <- glmer(model_formula, data = da, family = "binomial")
...}
formula <- as.formula( "y~ x + (1|z"))
cross_validation_function(formula)
答案 0 :(得分:1)
如果您的目标是从拟合模型中提取模型公式,则可以使用
attributes(model)$call[[2]]
。然后,在使用cv folds拟合模型时,可以使用此公式。
mod_formula <- attributes(model)$call[[2]]
train_model = glmer(mod_formula , data = train_data,
family = "binomial")