我最近为tensorflow服务导出了文本摘要模型。我能够运行一个客户端并成功地对模型进行gRPC调用,但不管我作为输入发送什么,我每次都得到相同的输出。我假设它与我导出模型的方式有关,也许它使用静态条目而不是我发送的输入,但是我不确定我执行的错误。我已经验证了客户端文件中传递的数据是正确的,但无论发送到self.stub.Predict的是什么,它总是相同的输出。有人看过这个或者可能看到我做错了吗?
客户端文件摘要:
def decode(self, passed_data):
now = datetime.now()
self.request.inputs['inputs'].CopyFrom(
#tf.contrib.util.make_tensor_proto(test_data_set[0], shape=[1]))
tf.contrib.util.make_tensor_proto(passed_data, shape=[1]))
result = self.stub.Predict(self.request, 5.0)
waiting = datetime.now() - now
return result, waiting.microseconds
导出代码段: ....
decode_mdl_hps = hps._replace(dec_timesteps=1)
model = seq2seq_attention_model.Seq2SeqAttentionModel(
decode_mdl_hps, vocab, num_gpus=FLAGS.num_gpus)
decoder = seq2seq_attention_decode.BSDecoder(model, batcher, hps, vocab)
serialized_output = tf.placeholder(tf.string, name='tf_output')
serialized_tf_example = tf.placeholder(tf.string, name='tf_example')
feature_configs = {
'inputs': tf.FixedLenFeature(shape=[1], dtype=tf.string),
}
tf_example = tf.parse_example(serialized_tf_example, feature_configs)
saver = tf.train.Saver()#sharded=True)
config = tf.ConfigProto(allow_soft_placement = True)
with tf.Session(config = config) as sess:
# Restore variables from training checkpoints.
ckpt = tf.train.get_checkpoint_state(FLAGS.checkpoint_dir)
if ckpt and ckpt.model_checkpoint_path:
saver.restore(sess, ckpt.model_checkpoint_path)
global_step = ckpt.model_checkpoint_path.split('/')[-1].split('-')[-1]
print('Successfully loaded model from %s at step=%s.' %
(ckpt.model_checkpoint_path, global_step))
res = decoder._Decode(saver, sess)
res_tensor = tf.convert_to_tensor(res)
print("Decoder value {}".format(type(res)))
else:
print('No checkpoint file found at %s' % FLAGS.checkpoint_dir)
return
# Export model
export_path = os.path.join(FLAGS.export_dir,str(FLAGS.export_version))
print('Exporting trained model to %s' % export_path)
#-------------------------------------------
tensor_info_inputs = tf.saved_model.utils.build_tensor_info(serialized_tf_example)
tensor_info_outputs = tf.saved_model.utils.build_tensor_info(res_tensor)
prediction_signature = (
tf.saved_model.signature_def_utils.build_signature_def(
inputs={ tf.saved_model.signature_constants.PREDICT_INPUTS: tensor_info_inputs},
outputs={tf.saved_model.signature_constants.PREDICT_OUTPUTS:tensor_info_outputs},
method_name=tf.saved_model.signature_constants.PREDICT_METHOD_NAME
))
#----------------------------------
legacy_init_op = tf.group(tf.tables_initializer(), name='legacy_init_op')
builder = saved_model_builder.SavedModelBuilder(export_path)
builder.add_meta_graph_and_variables(
sess=sess,
tags=[tf.saved_model.tag_constants.SERVING],
signature_def_map={
'predict':prediction_signature,
},
legacy_init_op=legacy_init_op)
builder.save()
print('Successfully exported model to %s' % export_path)