损失逐渐下降。 但准确率始终在50%左右。
# Create some wrappers for simplicity
def conv2d(x, W, b, strides=1):
# Conv2D wrapper, with bias and relu activation
x = tf.nn.conv2d(x, W, strides=[1, strides, strides, 1], padding='SAME')
x = tf.nn.bias_add(x, b)
return tf.nn.relu(x)
def maxpool2d(x, k=2):
# MaxPool2D wrapper
return tf.nn.max_pool(x, ksize=[1, k, k, 1], strides=[1, k, k, 1],
padding='SAME')
def conv_net(x, weights, biases, dropout):
# Tensor input become 4-D: [Batch Size, Height, Width, Channel]
# Convolution Layer
conv1 = conv2d(x, weights['wc1'], biases['bc1'])
# Max Pooling (down-sampling)
conv1 = maxpool2d(conv1, k=2)
# Convolution Layer
conv2 = conv2d(conv1, weights['wc2'], biases['bc2'])
# Max Pooling (down-sampling)
conv2 = maxpool2d(conv2, k=2)
# Fully connected layer
# Reshape conv2 output to fit fully connected layer input
fc1 = tf.reshape(conv2, [-1, weights['wd1'].get_shape().as_list()[0]])
fc1 = tf.add(tf.matmul(fc1, weights['wd1']), biases['bd1'])
fc1 = tf.nn.relu(fc1)
# Apply Dropout
fc1 = tf.nn.dropout(fc1, dropout)
# Output, class prediction
out = tf.add(tf.matmul(fc1, weights['out']), biases['out'])
return out
# Store layers weight & bias
weights = {
# 5x5 conv, 1 input, 32 outputs
'wc1': tf.Variable(tf.random_normal([5, 5, 1, 32])),
# 5x5 conv, 32 inputs, 64 outputs
'wc2': tf.Variable(tf.random_normal([5, 5, 32, 64])),
# fully connected, 7*7*64 inputs, 1024 outputs
'wd1': tf.Variable(tf.random_normal([7*7*64, 1024])),
# 1024 inputs, 10 outputs (class prediction)
'out': tf.Variable(tf.random_normal([1024, num_classes]))
}
biases = {
'bc1': tf.Variable(tf.random_normal([32])),
'bc2': tf.Variable(tf.random_normal([64])),
'bd1': tf.Variable(tf.random_normal([1024])),
'out': tf.Variable(tf.random_normal([num_classes]))
}
# Construct model
logits = conv_net(X, weights, biases, keep_prob)
prediction = tf.nn.softmax(logits)
# Define loss and optimizer
loss_op = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=logits, labels=Y))
optimizer = tf.train.AdamOptimizer(learning_rate).minimize(loss_op)
# Evaluate model
correct_pred = tf.equal(tf.argmax(prediction, 1), tf.argmax(Y, 1))
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))
# Initialize the variables (i.e. assign their default value)
init = tf.global_variables_initializer()
#Saver use to store the model
saver = tf.train.Saver()
from sklearn.model_selection import train_test_split
# Start training
with tf.Session() as sess:
# Run the initializer
sess.run(init)
for epoch in range(1, numOfEpoch):
train_x, val_x, train_y, val_y = train_test_split(Input, Labels, test_size = 0.1)
for i in range(0, len(train_x), batch_size):
trainLoss, _ = sess.run([loss_op, optimizer], feed_dict = {
X: train_x[i: i+batch_size],
Y: train_y[i: i+batch_size],
keep_prob: dropout
})
if i % 5 == 0:
print("The step is in "+ str(i)+ " step")
valAcc, valLoss = sess.run([accuracy, loss_op], feed_dict={
X: val_x,
Y: val_y,
keep_prob: 1.0})
print("Step " + str(epoch) + ", Minibatch Loss= " + \
"{:.4f}".format(valLoss) + ", Training Accuracy= " + \
"{:.3f}".format(valAcc))
print("Optimization Finished!")
saver.save(sess, "../model.ckpt")
以上是整个代码。 图像为[28 * 28 * 1]
图像的预处理是标准化。
在每个时代,损失总是在减少。在断断续续的时代之后,损失接近0.72。 但准确度仍然在50%左右。当参数初始化时,精度已经在50%左右。在火车上它永远不会改变很多。
预测中也有一些奇怪的事情。因为预测的输出接近1和0,而不是1和0之间的浮点值。
答案 0 :(得分:0)
当我将初始化程序更改为xavier初始化程序时。 这似乎很正常。