是否有一个简单的命令可以使用R中的lm()
函数进行一次性交叉验证?
具体来说,下面的代码有一个简单的命令吗?
x <- rnorm(1000,3,2)
y <- 2*x + rnorm(1000)
pred_error_sq <- c(0)
for(i in 1:1000) {
x_i <- x[-i]
y_i <- y[-i]
mdl <- lm(y_i ~ x_i) # leave i'th observation out
y_pred <- predict(mdl, data.frame(x_i = x[i])) # predict i'th observation
pred_error_sq <- pred_error_sq + (y[i] - y_pred)^2 # cumulate squared prediction errors
}
y_squared <- sum((y-mean(y))^2)/100 # Variation of the data
R_squared <- 1 - (pred_error_sq/y_squared) # Measure for goodness of fit
答案 0 :(得分:7)
另一种解决方案是使用caret
library(caret)
data <- data.frame(x = rnorm(1000, 3, 2), y = 2*x + rnorm(1000))
train(y ~ x, method = "lm", data = data, trControl = trainControl(method = "LOOCV"))
线性回归
1000个样本1个预测器
无预处理重采样:一次性交叉验证摘要 样本量:999,999,999,999,999,999 ......重新取样 结果:
RMSE Rsquared MAE
1.050268 0.940619 0.836808调整参数'intercept'保持不变,其值为TRUE
答案 1 :(得分:2)
您可以使用统计技巧来使用自定义函数,避免实际计算所有N个模型:
google.charts.load('current', {
packages: ['corechart']
}).then(function () {
var data = new google.visualization.DataTable();
data.addColumn('date', 'Timestamp');
data.addColumn('number', 'a');
data.addColumn('number', 'b');
var options = {
hAxis: {
title: 'Timestamp'
},
vAxis: {
title: 'something'
},
tooltip: { isHtml: true },
legend: {
position: 'none'
}
};
var chart = new google.visualization.LineChart(document.getElementById('chart_div'));
dataCall();
$interval(dataCall, 1000);
function dataCall() {
$http.get({x: "XYZ"}, successCallback, failureCallback);
function successCallback(response) {
data.addRow([new Date(), response.a, response.b]);
chart.draw(data, options);
}
function failureCallback(response) {
console.log(response);
}
}
});
这在此解释:{{3}} 它仅适用于线性模型 我想你可能想在公式中的平均值之后添加一个平方根。
答案 2 :(得分:1)
您可以尝试使用DAAG包中的cv.lm
:
cv.lm(data = DAAG::houseprices, form.lm = formula(sale.price ~ area),
m = 3, dots = FALSE, seed = 29, plotit = c("Observed","Residual"),
main="Small symbols show cross-validation predicted values",
legend.pos="topleft", printit = TRUE)
Arguments
data a data frame
form.lm, a formula or lm call or lm object
m the number of folds
dots uses pch=16 for the plotting character
seed random number generator seed
plotit This can be one of the text strings "Observed", "Residual", or a logical value. The logical TRUE is equivalent to "Observed", while FALSE is equivalent to "" (no plot)
main main title for graph
legend.pos position of legend: one of "bottomright", "bottom", "bottomleft", "left", "topleft", "top", "topright", "right", "center".
printit if TRUE, output is printed to the screen
答案 3 :(得分:0)
cv.glm
执行LOOCV,仅需要数据和lm
或glm
函数。
答案 4 :(得分:0)
只需编写您自己的代码,即可使用索引变量来标记一个样本外的观察值。用插入号针对最高投票者测试此方法。尽管插入符号简单易用,但我的残酷方法花费的时间更少。 (代替lm,我使用LDA,但没什么大不同)
for (index in 1:dim(df)[1]){
# here write your lm function
}