我有一个如下所示的数据框:
glimpse(spottingIntensityByMonth)
# Observations: 27
# Variables: 3
# $ yearMonth <dttm> 2015-05-01, 2015-06-01, 2015-07-01, 2015-08-01, 2015-09-01, 2015-10-01, 2...
# $ nClassificationsPerDayPerSpotter <dbl> 3.322581, 13.212500, 13.621701,
6.194700, 18.127778, 12.539589, 8.659722, ...
# $ nSpotters <int> 8, 8, 22, 28, 24, 22, 24, 27, 25, 29, 32, 32, 21, 14, 18, 13, 20, 19, 15, ...
我试图用ggplot2绘制它,如下所示:
ggplot() +
geom_col(data = spottingIntensityByMonth,
mapping = aes(x = yearMonth,
y = nClassificationsPerDayPerSpotter)
) +
xlab("Month of year") +
scale_y_continuous(name = "Daily classifications per Spotter") +
geom_line(data = spottingIntensityByMonth,
mapping = aes(x = yearMonth,
y = nSpotters)
) +
theme_bw()
这会产生如下情节:
现在我想添加一个说明行和列含义的图例。我该怎么做呢?谢谢!
答案 0 :(得分:4)
在ggplot中,会自动为映射美学创建图例。您可以按如下方式添加此类映射:
ggplot(data = df,
mapping = aes(x = x)) +
# specify fill for bar / color for line inside aes(); you can use
# whatever label you wish to appear in the legend
geom_col(aes(y = y.bar, fill = "bar.label")) +
geom_line(aes(y = y.line, color = "line.label")) +
xlab("Month of year") +
scale_y_continuous(name = "Daily classifications per Spotter") +
# the labels must match what you specified above
scale_fill_manual(name = "", values = c("bar.label" = "grey")) +
scale_color_manual(name = "", values = c("line.label" = "black")) +
theme_bw()
在上面的例子中,我还移动了数据&amp;共同美学映射(x)到ggplot()
。
示例数据集:
set.seed(7)
df <- data.frame(
x = 1:20,
y.bar = rpois(20, lambda = 5),
y.line = rpois(20, lambda = 10)
)
答案 1 :(得分:1)
此解决方案旨在从1个数据帧绘制2条曲线。一 列数据相对于x轴以折线图的形式绘制 (观察日期),另一个则相对于 Area Graph 相同的x轴(观测日期)。面积曲线位于第二 y轴。图例和格式设置也显示在 附加图片。希望您喜欢该解决方案。
数据帧结构如下所示:This is a sample of the whole dataset, I will pick 2 columns, obsdate, revenue, and value
我正在使用Shiny库将其托管在服务器上;如果你不知道 关于光泽,您可能会忽略,这只是布局〜HTML。
library(xlsx)#用于Excel导入的库 library(ggplot2)#绘图库 library(openxlsx)#FOR运行xlsx文件 library(shiny)#R中的SERVER UI库 library(lubridate)#用于将导入的日期转换为日期格式
file <- "C:/Users/Nikhil Asati/Desktop/Office/Bicurve_data.xlsx"
data1<- read.xlsx( file ,1)
data1$obsdate <- dmy(data1$obsdate)
ui <- fluidPage(
sidebarLayout(
sidebarPanel(),
mainPanel(
plotOutput("Plot")
)
)
)
server <- function(input, output) {
output$Plot <- renderPlot({
#plot value
p <- ggplot(data1, aes(x=obsdate))
p <- p + geom_line(aes(y=revenue, colour ="revenue"))
#plot revenue
p <- p + geom_ribbon(aes(ymin = 0, ymax=value/16, fill = 'value'),
linetype=1,
#solid, dashed or other line types
colour="grey70",
#border line color
size=1
# ,show.legend= TRUE
)
p <- p + scale_y_continuous(sec.axis = sec_axis(~.*16, name = "value"))
p<- p + scale_colour_manual("", values=c("revenue" = "Grey" ))
p<- p +scale_fill_manual(name = "", values = c("value" = "green"))
p<- p +theme(legend.position = "top")
p
})
}
shinyApp(ui = ui, server = server)
输出将为