在数据框

时间:2017-10-30 13:53:10

标签: r list dataframe rows correlation

我试图计算大数据帧的所有行之间的相关性,到目前为止已经提出了一个简单的for循环。例如:

name <- c("a", "b", "c", "d")
col1 <- c(43.78, 43.84, 37.92, 31.72)
col2 <- c(43.80, 43.40, 37.64, 31.62)
col3 <- c(43.14, 42.85, 37.54, 31.74)
df <- data.frame(name, col1, col2, col3)
cor.df <- data.frame(name1=NA, name2=NA,correl=NA)

for(i in 1: (nrow(df) - 1))  {
  for(j in (i+1): nrow(df) ) {
    v1 <- as.numeric( df[i, 2:ncol(df)] )
    v2 <- as.numeric( df[j, 2:ncol(df)] )
    correl <- cor(v1, v2)

    name1 <- df[i, "name"]
    name2 <- df[j, "name"]

    dftemp <- data.frame(name1, name2, correl)
    cor.df <- rbind(cor.df, dftemp)
   }
}

na.omit(cor.df)

#    name1 name2     correl
#     a     b      0.8841255
#     a     c      0.6842705
#     a     d     -0.6491118
#     b     c      0.9457125
#     b     d     -0.2184630
#     c     d      0.1105508

鉴于大数据帧和低效的for循环,相关计算需要很长时间。有人会对如何加快速度提出任何建议吗?请注意,我在列表中有很多数据框,所以我可以使用lapply(但还没弄清楚如何编写代码行)

1 个答案:

答案 0 :(得分:5)

删除第一列,转置并使用 base :: cor 函数:

> cor(t(df[-1]))
           [,1]       [,2]      [,3]       [,4]
[1,]  1.0000000  0.8841255 0.6842705 -0.6491118
[2,]  0.8841255  1.0000000 0.9457125 -0.2184630
[3,]  0.6842705  0.9457125 1.0000000  0.1105508
[4,] -0.6491118 -0.2184630 0.1105508  1.0000000
# pretty output
x <- cor(t(df[, -1]))
x[upper.tri(x, diag = TRUE)] <- NA
rownames(x) <- colnames(x) <- df$name
x <- na.omit(reshape::melt(t(x)))
x <- x[ order(x$X1, x$X2), ]

x
#    X1 X2      value
# 5   a  b  0.8841255
# 9   a  c  0.6842705
# 13  a  d -0.6491118
# 10  b  c  0.9457125
# 14  b  d -0.2184630
# 15  c  d  0.1105508