使用以下语法,cv2.PCACompute
函数在OpenCV 2.4中运行良好:
import cv2
mean, eigvec = cv2.PCACompute(data)
该函数存在于OpenCV 3.1中,但会引发以下异常:
TypeError: Required argument 'mean' (pos 2) not found
C++ documentation对于解释如何从Python调用它不是很有帮助。我猜测InputOutputArray
参数现在也是Python函数签名中的必需参数,但我无法找到使它们工作的方法。
有没有办法可以正常调用它?
(注意:我知道还有其他方法可以运行PCA,我可能最终会选择其中一种。我只是对新的OpenCV绑定如何工作感到好奇。 )
答案 0 :(得分:4)
mean, eigvec = cv2.PCACompute(data, mean=None)
首先搜索PCAC计算源。然后找到this:
// [modules/core/src/pca.cpp](L351-L360)
void cv::PCACompute(InputArray data, InputOutputArray mean,
OutputArray eigenvectors, int maxComponents)
{
CV_INSTRUMENT_REGION()
PCA pca;
pca(data, mean, 0, maxComponents);
pca.mean.copyTo(mean);
pca.eigenvectors.copyTo(eigenvectors);
}
好的,现在我们看了document:
C++: PCA& PCA::operator()(InputArray data, InputArray mean, int flags, int maxComponents=0)
Python: cv2.PCACompute(data[, mean[, eigenvectors[, maxComponents]]]) → mean, eigenvectors
Parameters:
data – input samples stored as the matrix rows or as the matrix columns.
mean – optional mean value; if the matrix is empty (noArray()), the mean is computed from the data.
flags –
operation flags; currently the parameter is only used to specify the data layout.
CV_PCA_DATA_AS_ROW indicates that the input samples are stored as matrix rows.
CV_PCA_DATA_AS_COL indicates that the input samples are stored as matrix columns.
maxComponents – maximum number of components that PCA should retain; by default, all the components are retained.
这就是说,
## py
mean, eigvec = cv2.PCACompute(data, mean=None)
等于
// cpp
PCA pca;
pca(data, mean=noArray(), flags=CV_PCA_DATA_AS_ROW);
...