我使用Spark Scala计算Dataframe行之间的余弦相似度。
数据帧格式低于
root
|-- SKU: double (nullable = true)
|-- Features: vector (nullable = true)
以下数据框的示例
+-------+--------------------+
| SKU| Features|
+-------+--------------------+
| 9970.0|[4.7143,0.0,5.785...|
|19676.0|[5.5,0.0,6.4286,4...|
| 3296.0|[4.7143,1.4286,6....|
|13658.0|[6.2857,0.7143,4....|
| 1.0|[4.2308,0.7692,5....|
| 513.0|[3.0,0.0,4.9091,5...|
| 3753.0|[5.9231,0.0,4.846...|
|14967.0|[4.5833,0.8333,5....|
| 2803.0|[4.2308,0.0,4.846...|
|11879.0|[3.1429,0.0,4.5,4...|
+-------+--------------------+
我尝试转置矩阵并检查以下提到的链接。Apache Spark Python Cosine Similarity over DataFrames,calculating-cosine-similarity-by-featurizing-the-text-into-vector-using-tf-idf但我相信有更好的解决方案
我尝试了下面的示例代码
val irm = new IndexedRowMatrix(inClusters.rdd.map {
case (v,i:Vector) => IndexedRow(v, i)
}).toCoordinateMatrix.transpose.toRowMatrix.columnSimilarities
但是我得到了以下错误
Error:(80, 12) constructor cannot be instantiated to expected type;
found : (T1, T2)
required: org.apache.spark.sql.Row
case (v,i:Vector) => IndexedRow(v, i)
我检查了以下链接Apache Spark: How to create a matrix from a DataFrame?但是无法使用Scala
答案 0 :(得分:6)
DataFrame.rdd
返回RDD[Row]
而不是RDD[(T, U)]
。您必须模式匹配Row
或直接提取有趣的部分。ml
Vector
与Datasets
一起使用,因为Spark 2.0与旧API使用的mllib
Vector
不同。您必须将其转换为与IndexedRowMatrix
一起使用。Long
而不是字符串。import org.apache.spark.sql.Row
val irm = new IndexedRowMatrix(inClusters.rdd.map {
Row(_, v: org.apache.spark.ml.linalg.Vector) =>
org.apache.spark.mllib.linalg.Vectors.fromML(v)
}.zipWithIndex.map { case (v, i) => IndexedRow(i, v) })