我无法弄清楚如何在tbl中的多个参数和变量之间有效映射以生成新变量。
在“真实”版本中,我基本上有一个生成中心估计的数学函数,我需要运行一系列不同参数的灵敏度测试。我试图弄清楚如何在整齐的过程中做到这一点。看起来map()和mutate()就是答案,但我遇到了麻烦。
# building the practice dataset
pracdf <- tibble(ID = letters,
p = runif(26, 100, 1000),
med.a = runif(26),
med.b = runif(26),
c = runif(26))
pracdf <- pracdf %>%
mutate(low.a = med.a * 0.8,
low.b = med.b * 0.8,
high.a = med.a * 1.2,
high.b = med.b * 1.2)
# this generates a few low/med/high values for variables
# the function
pracdf <- pracdf %>% mutate(d = p * med.a * med.b * c)
# works as expected. Now can I loop it with dynamic variable names?
f1 <- function(df, var.a) {
var.a <- enquo(var.a)
print(var.a)
d.name <- paste0("d.", quo_name(var.a))
print(d.name)
df %>% mutate(!!d.name := p * (!!var.a) * c)
}
pracdf2 <- f1(pracdf, med.a)
# works great! Eventually I want to loop through low, med, high. Start with a loop of 1
pracdf3 <- map(list(med.a), f1, df = pracdf)
# loop crashes spectacularly
pracdf3 <- map(list(med.a), ~f1, df = pracdf)
# failure
pracdf3 <- map(med.a, ~f1, df = pracdf)
# what am I doing with my life
答案 0 :(得分:2)
我认为使这项任务变得困难的一个问题是目前的设置可能不是很整洁&#34;。例如。 low.a
,low.b
,med.a
等似乎是我所理解的“不整洁”的例子。列。
下面是一种可能的方法(我相当肯定可以改进),它根本不使用for循环或自定义函数。关键的想法是采用最初的pracdf
并扩展现有的行,这样每个&#34;级别都有一行&#34; (即低,中,高)。这样做可以让我们在一个步骤中计算d
,而没有用于低,中和高的循环。
(编辑可读性并包含Jens Leerssen's条建议)
library(dplyr)
library(tidyr)
set.seed(123)
pracdf <- tibble(ID = letters,
p = runif(26, 100, 1000),
a = runif(26),
b = runif(26),
c = runif(26))
levdf <- tibble(level = c("low", "med", "high"),
level_val = c(0.8, 1.0, 1.2))
tidy_df <- pracdf %>% merge(levdf) %>%
mutate(d = p * (level_val * a) * (level_val * b) * c) %>%
select(-level_val) %>% arrange(ID) %>% as_tibble()
tidy_df
#> # A tibble: 78 x 7
#> ID p a b c level d
#> <chr> <dbl> <dbl> <dbl> <dbl> <chr> <dbl>
#> 1 a 358.8198 0.5440660 0.7989248 0.3517979 low 35.116168
#> 2 a 358.8198 0.5440660 0.7989248 0.3517979 med 54.869013
#> 3 a 358.8198 0.5440660 0.7989248 0.3517979 high 79.011379
#> 4 b 809.4746 0.5941420 0.1218993 0.1111354 low 4.169914
#> 5 b 809.4746 0.5941420 0.1218993 0.1111354 med 6.515490
#> 6 b 809.4746 0.5941420 0.1218993 0.1111354 high 9.382306
#> 7 c 468.0792 0.2891597 0.5609480 0.2436195 low 11.837821
#> 8 c 468.0792 0.2891597 0.5609480 0.2436195 med 18.496595
#> 9 c 468.0792 0.2891597 0.5609480 0.2436195 high 26.635096
#> 10 d 894.7157 0.1471136 0.2065314 0.6680556 low 11.622957
#> # ... with 68 more rows
但是,上面的结果可能不是您想要最终数据的格式。但我们可以通过使用tidy_df
和{{1}进行tidyr::gather
的收集和传播来解决这个问题。 }。
tidyr::spread
答案 1 :(得分:1)
考虑一种向量化方法(原谅我对于非tidyverse数据争用),其中所有新列都可以在一次调用中处理。在随机数据之前使用seed(888)
来重现输出:
f1 <- function(df, vars) {
df[paste0("d.", vars)] <- df$p * df[vars] * df$c
return(df)
}
newpracdf <- f1(pracdf, c("low.a","high.a","med.a","med.b","low.b","high.b"))
输出
# # A tibble: 26 x 15
# ID p med.a med.b c low.a low.b high.a high.b d.low.a d.high.a d.med.a d.med.b d.low.b d.high.b
# <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
# 1 a 122.9573 0.65746601 0.43123587 0.81314570 0.52597281 0.3449887 0.7889592 0.5174830 52.587917 78.881876 65.734897 43.115909 34.492727 51.739091
# 2 b 412.0127 0.19793909 0.77148952 0.26039116 0.15835127 0.6171916 0.2375269 0.9257874 16.988630 25.482945 21.235787 82.768834 66.215068 99.322601
# 3 c 155.1248 0.30834064 0.99850558 0.57853922 0.24667251 0.7988045 0.3700088 1.1982067 22.137823 33.206735 27.672279 89.611689 71.689351 107.534027
# 4 d 715.3769 0.85517040 0.81715464 0.84196723 0.68413632 0.6537237 1.0262045 0.9805856 412.071636 618.107455 515.089546 492.191742 393.753393 590.630090
# 5 e 790.5284 0.12617255 0.59290522 0.54879020 0.10093804 0.4743242 0.1514071 0.7114863 43.790379 65.685568 54.737973 257.222588 205.778070 308.667105
# 6 f 193.6968 0.15173488 0.93054996 0.08587380 0.12138791 0.7444400 0.1820819 1.1166600 2.019104 3.028655 2.523879 15.478286 12.382629 18.573943
# 7 g 451.6000 0.88123996 0.62858787 0.12546384 0.70499197 0.5028703 1.0574880 0.7543054 39.944473 59.916709 49.930591 35.615457 28.492365 42.738548
# 8 h 342.3741 0.09952918 0.56932309 0.10980862 0.07962334 0.4554585 0.1194350 0.6831877 2.993489 4.490234 3.741861 21.404056 17.123245 25.684867
# 9 i 143.9489 0.42407685 0.94929822 0.02754267 0.33926148 0.7594386 0.5088922 1.1391579 1.345083 2.017624 1.681353 3.763718 3.010975 4.516462
# 10 j 911.8069 0.25822441 0.08934875 0.55244369 0.20657953 0.0714790 0.3098693 0.1072185 104.058645 156.087967 130.073306 45.006930 36.005544 54.008316
# # ... with 16 more rows