我试图在rmarkdown中的一个方框内得到对齐的方程式。我正在编织到pdf。
框是必要的原因是因为我使用的YAML元数据自动左对齐所有文本,但我希望方程居中。
这是我的rmarkdown代码。正如您在运行时所看到的那样,方程式居中,但第二组=
符号未在两条线上对齐。
任何帮助非常感谢。
---
title: "Aligning equations in a box"
output:
pdf_document: default
html_document: null
word_document: null
toc: yes
linestretch: 1.3
classoption: fleqn
header-includes:
- \setlength{\mathindent}{0pt}
- \setlength\parindent{0pt}
---
\setlength{\abovedisplayskip}{-15pt}
\setlength{\belowdisplayskip}{1pt}
\setlength{\abovedisplayshortskip}{1pt}
\setlength{\belowdisplayshortskip}{1pt}
```{r global_options, include=FALSE, echo = FALSE}
knitr::opts_chunk$set(fig.width=12, fig.height=8, fig.path='Figs/',
echo=FALSE, warning=FALSE, message=FALSE, dev = 'pdf')
```
These words are automatically left-aligned by the YAML meta-data above so a box is necessary to centre equations.
### Equation 11.6
\[\large
\makebox[\linewidth]{$\displaystyle
\begin{aligned}
\text{when}\ PT &= 0:logit\ h(t_{j})\ &= [\alpha_{7}D_{7} + \alpha_{8}D_{8} + \cdots + \alpha_{12}D_{12}]\\
\text{when}\ PT &= 1:logit\ h(t_{j})\ &= [\alpha_{7}D_{7} + \alpha_{8}D_{8} + \cdots + \alpha_{12}D_{12}] + \beta_{1}
\end{aligned}
$}
\]
答案 0 :(得分:1)
不确定我理解,但是否需要在两者之间留出很大的空间?如果没有,您只需删除&
,
\[\large
\makebox[\linewidth]{$\displaystyle
\begin{aligned}
\text{when}\ PT =& 0:logit\ h(t_{j})\ = [\alpha_{7}D_{7} + \alpha_{8}D_{8} + \cdots + \alpha_{12}D_{12}]\\
\text{when}\ PT =& 1:logit\ h(t_{j})\ = [\alpha_{7}D_{7} + \alpha_{8}D_{8} + \cdots + \alpha_{12}D_{12}] + \beta_{1}
\end{aligned}
$}
\]
这给出了
如果您想要空格,可以使用\qquad
或\quad
\[\large
\makebox[\linewidth]{$\displaystyle
\begin{aligned}
\text{when}\ PT =& 0:logit\ h(t_{j})\ \qquad= [\alpha_{7}D_{7} + \alpha_{8}D_{8} + \cdots + \alpha_{12}D_{12}]\\
\text{when}\ PT =& 1:logit\ h(t_{j})\ \qquad= [\alpha_{7}D_{7} + \alpha_{8}D_{8} + \cdots + \alpha_{12}D_{12}] + \beta_{1}
\end{aligned}
$}
\]
给了我
修改强>
在评论中回答问题。将块包裹在两个&
之间。
\[\large
\makebox[\linewidth]{$\displaystyle
\begin{aligned}
\text{whenmoretext}\ PT &= 0:logit\ h(t_{j})\ & &= [\alpha_{7}D_{7} + \alpha_{8}D_{8} + \cdots + \alpha_{12}D_{12}]\\
\text{when}\ PT &= 1:logit\ h(t_{j})\ & &= [\alpha_{7}D_{7} + \alpha_{8}D_{8} + \cdots + \alpha_{12}D_{12}] + \beta_{1}
\end{aligned}
$}
\]