我有一些代码可以读取Word文档中的表格并从中生成数据框。
import numpy as np
import pandas as pd
from docx import Document
#### Time for some old fashioned user functions ####
def make_dataframe(f_name, table_loc):
document = Document(f_name)
tables = document.tables[table_loc]
for i, row in enumerate(tables.rows):
text = (cell.text for cell in row.cells)
if i == 0:
keys = tuple(text)
continue
row_data = dict(zip(keys, text))
data.append(row_data)
df = pd.DataFrame.from_dict(data)
return df
SHRD_filename = "SHRD - 12485.docx"
SHDD_filename = "SHDD - 12485.docx"
df_SHRD = make_dataframe(SHRD_filename,30)
df_SHDD = make_dataframe(SHDD_filename,-60)
因为文件不同(例如SHRD有32个表,我要找的是倒数第二个,但是SHDD文件有280个表,我要找的那个是结尾的第60个。但情况可能并非总是如此。
如何搜索文档中的表格并开始处理cell[0,0] = 'Tag Numbers'
的表格。
答案 0 :(得分:3)
您可以遍历表并检查第一个单元格中的文本。我修改了输出以返回数据帧列表,以防万一找到多个表。如果没有表符合标准,它将返回一个空列表。
def make_dataframe(f_name, first_cell_string='tag number'):
document = Document(f_name)
# create a list of all of the table object with text of the
# first cell equal to `first_cell_string`
tables = [t for t in document.tables
if t.cell(0,0).text.lower().strip()==first_cell_string]
# in the case that more than one table is found
out = []
for table in tables:
for i, row in enumerate(table.rows):
text = (cell.text for cell in row.cells)
if i == 0:
keys = tuple(text)
continue
row_data = dict(zip(keys, text))
data.append(row_data)
out.append(pd.DataFrame.from_dict(data))
return out