我有以下示例DataFrame:
rdd = sc.parallelize([(1,20), (2,30), (3,30)])
df2 = spark.createDataFrame(rdd, ["id", "duration"])
df2.show()
+---+--------+
| id|duration|
+---+--------+
| 1| 20|
| 2| 30|
| 3| 30|
+---+--------+
我想以持续时间的desc顺序对此DataFrame进行排序,并添加一个具有持续时间累积总和的新列。所以我做了以下事情:
windowSpec = Window.orderBy(df2['duration'].desc())
df_cum_sum = df2.withColumn("duration_cum_sum", sum('duration').over(windowSpec))
df_cum_sum.show()
+---+--------+----------------+
| id|duration|duration_cum_sum|
+---+--------+----------------+
| 2| 30| 60|
| 3| 30| 60|
| 1| 20| 80|
+---+--------+----------------+
我想要的输出是:
+---+--------+----------------+
| id|duration|duration_cum_sum|
+---+--------+----------------+
| 2| 30| 30|
| 3| 30| 60|
| 1| 20| 80|
+---+--------+----------------+
我如何得到这个?
以下是细分:
+--------+----------------+
|duration|duration_cum_sum|
+--------+----------------+
| 30| 30| #First value
| 30| 60| #Current duration + previous cum sum value
| 20| 80| #Current duration + previous cum sum value
+--------+----------------+
答案 0 :(得分:1)
你可以引入row_number
来打破关系;如果写在sql
:
df2.selectExpr(
"id", "duration",
"sum(duration) over (order by row_number() over (order by duration desc)) as duration_cum_sum"
).show()
+---+--------+----------------+
| id|duration|duration_cum_sum|
+---+--------+----------------+
| 2| 30| 30|
| 3| 30| 60|
| 1| 20| 80|
+---+--------+----------------+
答案 1 :(得分:0)
在这里您可以检查
df2.withColumn('cumu', F.sum('duration').over(Window.orderBy(F.col('duration').desc()).rowsBetween(Window.unboundedPreceding, 0)
)).show()