我需要修改第二个卷积层的最后一个特征映射的输出 或者如果可能的话,将数组添加到我的转换层输出中 下面是我创建的python脚本和输出中所需更改的示例 谢谢您的帮助!
import numpy as np
from keras import backend as K
num=18
m=11
n=50
k=3
np.random.seed(100)
features = np.random.rand(num,m,n,k)
input_shape=features.shape[1:]
model = Sequential()
model.add(Conv2D(2, kernel_size=(1, 3), strides=(1,1),activation='relu',input_shape=input_shape))
model.add(Conv2D(21, kernel_size=(1, 48), strides=(1,1),padding="valid",activation='relu'))
model.add(Conv2D(1, kernel_size=(1, 1), strides=(1, 1),activation='relu',padding="valid"))
model.add(Dense(1, activation='softmax'))
Adam = optimizers.Adam(lr=0.00003, beta_1=0.9, beta_2=0.999, epsilon=1e-08, decay=0.0)
model.compile(loss='mse',optimizer=Adam)
get_1st_layer_output = K.function([model.layers[0].input],
[model.layers[1].output])
layer_output = get_1st_layer_output([features])
设置所需的layer_output值
我需要在每个传播步骤中都这样做。
for i in range(0,11):
layer_output[0][0][i][0][20]=0.1
print(layer_output[0][0][i][0][20])
答案 0 :(得分:0)
我认为在这种情况下我会使用具有常数张量的连接。不幸的是,我无法让它工作,但无论如何我都会分享我的工作,希望能帮助你。
import numpy as np
import keras
from keras import backend as K
from keras.models import Sequential
from keras.layers import Conv2D, Dense, Concatenate
from keras import optimizers
num=18
m=11
n=50
k=3
np.random.seed(100)
features = np.random.rand(num, m, n, k)
custom_tensor = K.constant(0.1, shape=(11, 48, 1))
input_shape = features.shape[1:]
input = keras.Input(shape=input_shape)
print(K.ndim(input))
layer0 = Conv2D(2, kernel_size=(1, 3), strides=(1,1),activation='relu')(input)
layer0_added = Concatenate(axis=-1)([layer0, custom_tensor])
layer1 = Conv2D(20, kernel_size=(1, 48), strides=(1,1),padding="valid",activation='relu')(layer0_added)
layer2 = Conv2D(1, kernel_size=(1, 1), strides=(1, 1),activation='relu',padding="valid")(layer1)
layer3 = Dense(1, activation='softmax')(layer2)
model = keras.models.model(layer0)
Adam = optimizers.Adam(lr=0.00003, beta_1=0.9, beta_2=0.999, epsilon=1e-08, decay=0.0)
model.compile(loss='mse', optimizer=Adam)
它产生了错误
ValueError: `Concatenate` layer requires inputs with matching shapes except for the concat axis. Got inputs shapes: [(None, 11, 48, 2), (11, 48, 1)]
但希望无论如何这对你有帮助。