我有一个csv文件,我将其作为RDD加载到Spark中:
val home_rdd = sc.textFile("hdfs://path/to/home_data.csv")
val home_parsed = home_rdd.map(row => row.split(",").map(_.trim))
val home_header = home_parsed.first
val home_data = home_parsed.filter(_(0) != home_header(0))
home_data
然后是:
scala> home_data
res17: org.apache.spark.rdd.RDD[Array[String]] = MapPartitionsRDD[3] at filter at <console>:30
scala> home_data.take(3)
res20: Array[Array[String]] = Array(Array("7129300520", "20141013T000000", 221900, "3", "1", 1180, 5650, "1", 0, 0, 3, 7, 1180, 0, 1955, 0, "98178", 47.5112, -122.257, 1340, 5650), Array("6414100192", "20141209T000000", 538000, "3", "2.25", 2570, 7242, "2", 0, 0, 3, 7, 2170, 400, 1951, 1991, "98125", 47.721, -122.319, 1690, 7639), Array("5631500400", "20150225T000000", 180000, "2", "1", 770, 10000, "1", 0, 0, 3, 6, 770, 0, 1933, 0, "98028", 47.7379, -122.233, 2720, 8062))
我还有一个带有RDD加载的邻居的csv,然后用来创建一个Map[String,String]
的地图:
val zip_rdd = sc.textFile("hdfs://path/to/zipcodes.csv")
val zip_parsed = zip_rdd.map(row => row.split(",").map(_.trim))
val zip_header = zip_parsed.first
val zip_data = zip_parsed.filter(_(0) != zip_header(0))
val zip_map = zip_data.map(row => (row(0), row(1))).collectAsMap
val zip_ind = home_header.indexOf("zipcode") //to get the zipcode column in home_data
其中:
scala> zip_map.take(3)
res21: scala.collection.Map[String,String] = Map(98151 -> Seattle, 98052 -> Redmond, 98104 -> Seattle)
我接下来要做的是遍历home_data
并使用每行中的zipcode值(zip_ind
= 16)从zip_map
获取邻域值并附加值到行尾。
val zip_processed = home_data.map(row => row :+ zip_map.get(row(zip_ind)))
但每次从zip_map获取时,某些内容都会失败,因此它只会将None
附加到home_data中每行的末尾
scala> zip_processed.take(3)
res19: Array[Array[java.io.Serializable]] = Array(Array("7129300520", "20141013T000000", 221900, "3", "1", 1180, 5650, "1", 0, 0, 3, 7, 1180, 0, 1955, 0, "98178", 47.5112, -122.257, 1340, 5650, None), Array("6414100192", "20141209T000000", 538000, "3", "2.25", 2570, 7242, "2", 0, 0, 3, 7, 2170, 400, 1951, 1991, "98125", 47.721, -122.319, 1690, 7639, None), Array("5631500400", "20150225T000000", 180000, "2", "1", 770, 10000, "1", 0, 0, 3, 6, 770, 0, 1933, 0, "98028", 47.7379, -122.233, 2720, 8062, None))
我正在尝试对此进行调试,但我不确定为什么它会在zip_map.get(row(zip_ind))
失败。
我对Scala相当绿色,所以也许我做了一些不好的假设,但试图找出如何更好地理解map函数中发生的事情。
答案 0 :(得分:1)
当没有匹配时,Map.get()返回getOrElse
。您可以使用val home_data = sc.parallelize(Array(
Array("7129300520", "20141013T000000", 221900, "3", "1", 1180, 5650, "1", 0, 0, 3, 7, 1180, 0, 1955, 0, "98178", 47.5112, -122.257, 1340, 5650),
Array("6414100192", "20141209T000000", 538000, "3", "2.25", 2570, 7242, "2", 0, 0, 3, 7, 2170, 400, 1951, 1991, "98125", 47.721, -122.319, 1690, 7639),
Array("5631500400", "20150225T000000", 180000, "2", "1", 770, 10000, "1", 0, 0, 3, 6, 770, 0, 1933, 0, "98028", 47.7379, -122.233, 2720, 8062)
))
val zip_ind = 16
val zip_map: Map[String, String] = Map("98178" -> "A", "98028" -> "B")
val zip_processed = home_data.map(row => row :+ zip_map.getOrElse(row(zip_ind).toString, "N/A"))
zip_processed.collect
// res1: Array[Array[Any]] = Array(
// Array(7129300520, 20141013T000000, 221900, 3, 1, 1180, 5650, 1, 0, 0, 3, 7, 1180, 0, 1955, 0, 98178, 47.5112, -122.257, 1340, 5650, A),
// Array(6414100192, 20141209T000000, 538000, 3, 2.25, 2570, 7242, 2, 0, 0, 3, 7, 2170, 400, 1951, 1991, 98125, 47.721, -122.319, 1690, 7639, N/A),
// Array(5631500400, 20150225T000000, 180000, 2, 1, 770, 10000, 1, 0, 0, 3, 6, 770, 0, 1933, 0, 98028, 47.7379, -122.233, 2720, 8062, B)
// )
使用后备附加Map值:
{{1}}