我正在尝试将keras模型与keras-to-caffe转换脚本一起使用;每当我尝试运行脚本时,它会加载我的模型然后给我一个错误,上面写着“只支持通道 - 首先支持”。我正在用形状(24,24,3)喂我的模型图像 - 但它想要(3,24,24)。
每当我尝试在形状的图像上训练我的模型时(3,24,24),我都会得到这个错误(它认为我用24个通道喂它一个3x24图像,我相信);
ValueError: Negative dimension size caused by subtracting 3 from 1 for 'conv2d_2/convolution' (op: 'Conv2D') with input shapes: [?,1,22,32], [3,3,32,64].
我如何提供我的keras模型频道 - 第一张图片?
(模型代码以防任何人需要它:我只是做一个简单的分类问题)
input_1 = Input(shape=input_shape) # input shape is 24,24,3 - needs to be 3,24,24
conv_1 = Conv2D(32, kernel_size=(3, 3),
activation='relu',
input_shape=input_shape)(input_1)
conv_2 = Conv2D(64, (3, 3), activation='relu')(conv_1)
pool_1 = MaxPooling2D(pool_size=(2, 2))(conv_2)
drop_1 = Dropout(0.25)(pool_1)
flatten_1 = Flatten()(drop_1)
dense_1 = Dense(128, activation='relu')(flatten_1)
drop_2 = Dropout(0.5)(dense_1)
dense_2 = Dense(128, activation='relu')(drop_2)
drop_3 = Dropout(0.5)(dense_2)
dense_3 = Dense(num_classes, activation='softmax')(drop_3)
model = Model(inputs=input_1, outputs=dense_3)
model.compile(loss=keras.losses.categorical_crossentropy,
optimizer=keras.optimizers.Adadelta(),
metrics=['accuracy'])
model.fit(x_train, y_train,
batch_size=batch_size,
epochs=epochs,
validation_data=(x_test, y_test),
verbose=1)
答案 0 :(得分:2)
每个卷积层都接受参数data_format='channels_first'
。
您还可以找到keras.json
文件(在<yourUserFolder>/.keras
中)并将其设置为默认配置。
编辑:@ Gal的评论是一个非常有趣的观点。如果您计划使用多台计算机,最好在代码中设置配置:keras.backend.set_image_data_format('channels_first')