import time
zero = 0
eight = 8
nine = 9
ten = 10
twelve = 12
nineteen = 19
twenty = 20
while zero <= ten:
print(zero)
zero += 1
time.sleep(0)
while twelve <= twenty:
print(twelve)
twelve += 2
time.sleep(0)
while nineteen >= ten:
print(nineteen)
nineteen -= 1
time.sleep(0)
while eight >= 0:
print(eight)
eight -= 2
time.sleep(0)
**x = int(input("What number would you like to count to?: "))
while zero >= x:
print(zero)
zero += 2
time.sleep(1)**
一切正常,直到粗体部分,我希望python计数到用户给出的数字(从零到X),间隔为2.对不起,如果这个问题太简单了问我但是我是编码相当新,我找不到任何答案,所以我决定在这里发帖。
答案 0 :(得分:0)
你的情况是倒退的:
在请求输入之前重置'''
chebyshev5_batch
Purpose:
perform the graph filtering on the given layer
Args:
x: the batch of inputs for the given layer,
dense tensor, size: [N, M, Fin],
L: the batch of sorted Laplacian of the given layer (tf.Tensor)
if in dense format, size of [N, M, M]
Fout: the number of output features on the given layer
K: the filter size or number of hopes on the given layer.
lyr_num: the idx of the original Laplacian lyr (start form 0)
Output:
y: the filtered output from the given layer
'''
def chebyshev5_batch(x, L, Fout, K, lyr_num):
N, M, Fin = x.get_shape()
#N, M, Fin = int(N), int(M), int(Fin)
# # Rescale Laplacian and store as a TF sparse tensor. Copy to not modify the shared L.
# L = scipy.sparse.csr_matrix(L)
# L = graph.rescale_L(L, lmax=2)
# L = L.tocoo()
# indices = np.column_stack((L.row, L.col))
# L = tf.SparseTensor(indices, L.data, L.shape)
# L = tf.sparse_reorder(L)
# # Transform to Chebyshev basis
# x0 = tf.transpose(x, perm=[1, 2, 0]) # M x Fin x N
# x0 = tf.reshape(x0, [M, Fin*N]) # M x Fin*N
def expand_concat(orig, new):
new = tf.expand_dims(new, 0) # 1 x N x M x Fin
return tf.concat([orig, new], axis=0) # (shape(x)[0] + 1) x N x M x Fin
# L: # N x M x M
# x0: # N x M x Fin
# L*x0: # N x M x Fin
x0 = x # N x M x Fin
stk_x = tf.expand_dims(x0, axis=0) # 1 x N x M x Fin (eventually K x N x M x Fin, if K>1)
if K > 1:
x1 = tf.matmul(L, x0) # N x M x Fin
stk_x = expand_concat(stk_x, x1)
for kk in range(2, K):
x2 = tf.matmul(L, x1) - x0 # N x M x Fin
stk_x = expand_concat(stk_x, x2)
x0 = x1
x1 = x2
# now stk_x has the shape of K x N x M x Fin
# transpose to the shape of N x M x Fin x K
## source positions 1 2 3 0
stk_x_transp = tf.transpose(stk_x, perm=[1,2,3,0])
stk_x_forMul = tf.reshape(stk_x_transp, [N*M, Fin*K])
#W = self._weight_variable([Fin*K, Fout], regularization=False)
W_initial = tf.truncated_normal_initializer(0, 0.1)
W = tf.get_variable('weights_L_'+str(lyr_num), [Fin*K, Fout], tf.float32, initializer=W_initial)
tf.summary.histogram(W.op.name, W)
y = tf.matmul(stk_x_forMul, W)
y = tf.reshape(y, [N, M, Fout])
return y
:
zero
并更改
zero = 0
x = int(input("What.........
到
while zero >= x:
答案 1 :(得分:0)
如果您执行以下操作,我会说您可以同时避免使用range
和while
:
print(2 * (x // 2))
答案 2 :(得分:0)
要完成计数到用户以2为间隔给出的数字的任务,你可以这样做:
list1 = []
num = int(input("Enter a number: "))
for i in range(num + 1):
list1.append(i)
print(list1[::2])
我希望我解决了你的问题。