我想将图像的局部均值滤波器存储为numpy数组。图像边缘附近有一些缺失的像素,用有效的掩码(bool数组)表示。
我可以使用skimage.filters.rank
,但我的图片超出[-1, 1]
范围,出于某种原因,scikit-image将其作为要求。
还有astropy.convolution
,但它会插入缺失的数据。对于简单的平均值,不需要插值。只是平均有效像素。输入和输出有效掩码是相同的。
简单地将无效像素设置为零不是一个选项,因为它会污染附近的有效像素平均值。
还有this question,但它并不重复,因为它询问更通用的卷积(这只是平均值)。
答案 0 :(得分:0)
@ stefan-van-der-walt所指的方法,即使用scipy.ndimage.generic_filter
和numpy.nanmean
(尚未针对速度进行优化)。
import numpy as np
from scipy.ndimage import generic_filter
def nanmean_filter(input_array, *args, **kwargs):
"""
Arguments:
----------
input_array : ndarray
Input array to filter.
size : scalar or tuple, optional
See footprint, below
footprint : array, optional
Either `size` or `footprint` must be defined. `size` gives
the shape that is taken from the input array, at every element
position, to define the input to the filter function.
`footprint` is a boolean array that specifies (implicitly) a
shape, but also which of the elements within this shape will get
passed to the filter function. Thus ``size=(n,m)`` is equivalent
to ``footprint=np.ones((n,m))``. We adjust `size` to the number
of dimensions of the input array, so that, if the input array is
shape (10,10,10), and `size` is 2, then the actual size used is
(2,2,2).
output : array, optional
The `output` parameter passes an array in which to store the
filter output. Output array should have different name as compared
to input array to avoid aliasing errors.
mode : {'reflect', 'constant', 'nearest', 'mirror', 'wrap'}, optional
The `mode` parameter determines how the array borders are
handled, where `cval` is the value when mode is equal to
'constant'. Default is 'reflect'
cval : scalar, optional
Value to fill past edges of input if `mode` is 'constant'. Default
is 0.0
origin : scalar, optional
The `origin` parameter controls the placement of the filter.
Default 0.0.
See also:
---------
scipy.ndimage.generic_filter
"""
return generic_filter(input_array, function=np.nanmean, *args, **kwargs)