我想将数据框聚合两列,以便它们的变体只存在一次。值列应由max()
或sum()
数据:
itemID1 |itemID2 |value
---------|---------|-------
B0001 |B0001 |1
B0002 |B0001 |1
B0001 |B0002 |2
B0002 |B0002 |0
结果可能是:
itemID1 |itemID2 |value
----------|----------|---------
B0001 |B0001 |1
B0001 |B0002 |3 #itemIDs could also be ordered in the other way
B0002 |B0002 |0
到目前为止,我已在SQL中实现它以通过库sqldf使用它,但是sqldf不支持WITH子句。
是否有可能直接在R?
中聚合这样的数据帧答案 0 :(得分:8)
在base R
中,但它会复制数据,因为我处理的是一份副本,保持原文不变。
dat2 <- dat
dat2[1:2] <- apply(dat2[1:2], 1, sort)
aggregate(value ~ itemID1 + itemID2, dat2, sum)
# itemID1 itemID2 value
#1 B0001 B0001 1
#2 B0001 B0002 3
#3 B0002 B0002 0
现在你可以rm(dat2)
来整理。
数据。强>
dat <-
structure(list(itemID1 = structure(c(1L, 2L, 1L, 2L), .Label = c("B0001",
"B0002"), class = "factor"), itemID2 = structure(c(1L, 1L, 2L,
2L), .Label = c("B0001", "B0002"), class = "factor"), value = c(1L,
1L, 2L, 0L)), .Names = c("itemID1", "itemID2", "value"), class = "data.frame", row.names = c(NA,
-4L))
答案 1 :(得分:4)
dplyr
和pmin
/ pmax
:
library(dplyr)
df1 %>%
mutate(ItemID1_ = pmin(itemID1 ,itemID2),
ItemID2_ = pmax(itemID1 ,itemID2)) %>%
group_by(ItemID1_,ItemID2_) %>%
summarize_at("value",sum) %>%
ungroup
# # A tibble: 3 x 3
# ItemID1_ ItemID2_ value
# <chr> <chr> <int>
# 1 B0001 B0001 1
# 2 B0001 B0002 3
# 3 B0002 B0002 0
关注@ A5C1D2H2I1M1N2O1R2T1的评论后,您可以跳过mutate部分并使用相同的输出:
df1 %>%
group_by(itemID1_ = pmin(itemID1, itemID2),
itemID2_ = pmax(itemID1, itemID2)) %>%
summarise_at("value", sum) %>%
ungroup
答案 2 :(得分:4)
如果你想坚持sqldf
:
library(sqldf)
sqldf("select itemID1, itemID2, sum(value) as value
from (select case when itemID1 <= itemID2 then itemID1 else itemID2 end as itemID1,
case when itemID1 > itemID2 then itemID1 else itemID2 end as itemID2,
value
from df)
group by itemID1, itemID2")
<强>结果:强>
itemID1 itemID2 value
1 B0001 B0001 1
2 B0001 B0002 3
3 B0002 B0002 0
数据:强>
df = structure(list(itemID1 = structure(c(1L, 2L, 1L, 2L), .Label = c("B0001",
"B0002"), class = "factor"), itemID2 = structure(c(1L, 1L, 2L,
2L), .Label = c("B0001", "B0002"), class = "factor"), value = c(1L,
1L, 2L, 0L)), .Names = c("itemID1", "itemID2", "value"), class = "data.frame", row.names = c(NA,
-4L))
答案 3 :(得分:3)
为了完整起见,这里还有一个data.table
解决方案:
library(data.table)
setDT(DT)[, .(value = sum(value)),
by = .(itemID1 = pmin(itemID1, itemID2), itemID2 = pmax(itemID1, itemID2))]
itemID1 itemID2 value 1: B0001 B0001 1 2: B0001 B0002 3 3: B0002 B0002 0
DT <- fread("itemID1 |itemID2 |value
B0001 |B0001 |1
B0002 |B0001 |1
B0001 |B0002 |2
B0002 |B0002 |0", sep = "|")