我希望这是一个重复的问题,但我现在花了很多时间试图找到解决方案,并且非常感谢一些帮助。
我在数据框中有一个变量timestamp
,当前存储为一个因子。 timestamp
是日期和时间,格式为dd / mm / yyyy hh:mm:ss:ssssss
我希望能够使用timestamp变量对数据帧进行子集化,例如09/10/2017 00:02:00和09/10/2017 00:06:00之间的所有行。
我已尝试转换为有序因子,并尝试转换为POSIXlt来帮助进行子集化,但没有成功。
提前感谢您的任何帮助
df <- data.frame(timestamp=c("09/10/2017 00:00:00:000000", "09/10/2017 00:01:00:000000", "09/10/2017 00:02:00:000000",
"09/10/2017 00:03:00:000000", "09/10/2017 00:04:00:000000", "09/10/2017 00:05:00:000000",
"09/10/2017 00:06:00:000000", "09/10/2017 00:07:00:000000", "09/10/2017 00:08:00:000000",
"09/10/2017 00:09:00:000000", "09/10/2017 00:10:00:000000", "09/10/2017 00:00:00:000000",
"09/10/2017 00:01:00:000000", "09/10/2017 00:02:00:000000", "09/10/2017 00:03:00:000000",
"09/10/2017 00:04:00:000000", "09/10/2017 00:05:00:000000", "09/10/2017 00:06:00:000000",
"09/10/2017 00:07:00:000000", "09/10/2017 00:08:00:000000", "09/10/2017 00:09:00:000000",
"09/10/2017 00:10:00:000000"), b=c (1:22))
答案 0 :(得分:1)
以下是使用lubridate
require(lubridate);
# Convert timestamps to POSIXct time&date
df$timestamp <- dmy_hms(gsub(":000000", "", df$timestamp));
# These are your query start/stop dates×
start <- "09/10/2017 00:02:00";
stop <- "09/10/2017 00:06:00";
interval <- interval(dmy_hms(start), dmy_hms(stop));
# Return entries that fall within query interval
df[df$timestamp %within% interval, ];
# timestamp b
#3 2017-10-09 00:02:00 3
#4 2017-10-09 00:03:00 4
#5 2017-10-09 00:04:00 5
#6 2017-10-09 00:05:00 6
#7 2017-10-09 00:06:00 7
#14 2017-10-09 00:02:00 14
#15 2017-10-09 00:03:00 15
#16 2017-10-09 00:04:00 16
#17 2017-10-09 00:05:00 17
#18 2017-10-09 00:06:00 18
或使用subset(df, timestamp %within% interval)
给出相同的结果。最好将其包装在一个更常用的功能中。