我正在练习C ++并尝试实现不可变列表。
在我的一个测试中,我试图以递归方式创建一个包含大量值(100万个节点)的列表。所有值都是const
,所以我不能执行常规循环,这也不是功能,你知道。
测试以Segmentation fault
失败。
我的系统是带有Linux 4.4的64位Xubuntu 16.04 LTS。
我用g ++ 5.4和clang ++ 3.8使用--std=c++14 -O3
标志编译我的代码。
我写了一个简单的例子,它显示了这种情况,当尾调用应该很容易优化,但出现问题并出现Segmentation fault
。函数f
只等待amount
次迭代,然后创建一个指向单int
的指针并返回它
#include <memory>
using std::shared_ptr;
shared_ptr<int> f(unsigned amount) {
return amount? f(amount - 1) : shared_ptr<int>{new int};
}
int main() {
return f(1E6) != nullptr;
}
注意此示例仅在g++
时失败,而clang++
使其正常。
虽然,在更复杂的例子中,它也没有优化。
这是一个带有递归插入元素的简单列表的示例。
我还添加了destroy
函数,这有助于避免在销毁期间堆栈溢出。
在这里,我得到Segmentation fault
两个编译器
#include <memory>
using std::shared_ptr;
struct L {
shared_ptr<L> tail;
L(const L&) = delete;
L() = delete;
};
shared_ptr<L> insertBulk(unsigned amount, const shared_ptr<L>& tail) {
return amount? insertBulk(amount - 1, shared_ptr<L>{new L{tail}})
: tail;
}
void destroy(shared_ptr<L> list) {
if (!list) return;
shared_ptr<L> tail = list->tail;
list.reset();
for (; tail; tail = tail->tail);
}
int main() {
shared_ptr<L> list = shared_ptr<L>{new L{nullptr}};
destroy(insertBulk(1E6, list));
return 0;
}
注意 两个编译器都很好地优化了使用常规指针的实现。
在我的情况下,shared_ptr
真的打破了尾部调用优化吗?
它是编译器吗? shared_ptr
实施问题或问题?
答案 0 :(得分:3)
简短回答是:是和否。
C ++中的共享指针不会破坏尾调用优化, 但它使这种递归函数的创建变得复杂,可以通过编译器转换为循环。
我记得shared_ptr
有一个析构函数,C ++有RAII。
这使得优化尾部调用的构造更加困难,正如Can Tail Call Optimization and RAII Co-Exist?问题中讨论的那样。
@KennyOstrom建议使用普通指针来解决这个问题
static const List* insertBulk_(unsigned amount, const List* tail=nullptr) {
return amount? insertBulk_(amount - 1, new List{tail})
: tail;
}
使用以下构造函数
List(const List* tail): tail{tail} {}
当tail
的{{1}}是List
的实例时,尾调用已成功优化。
需要自定义销毁策略。
幸运的是,shared_ptr
允许我们设置它,
所以我通过shared_ptr
隐藏了List
的析构函数,
并将其用于列表销毁
private
构造函数应将此销毁函数传递给static void destroy(const List* list) {
if (!list) return;
shared_ptr<const List> tail = list->tail;
delete list;
for (; tail && tail.use_count() == 1; tail = tail->tail);
}
初始化列表
tail
在例外的情况下,我没有适当的清理,所以问题还没有解决。
我想使用List(const List* tail): tail{tail, List::destroy} {}
,因为它是安全的,但现在我不会将它用于当前列表头,直到构造结束。
需要观察“裸”指针,直到它被包装到共享指针中,并在紧急情况下释放它。
让我们将尾指针的引用传递给shared_ptr
而不是指针本身。
这将允许最后一个好的指针在函数
insertBulk_
然后需要类似static const List* insertBulk_(unsigned amount, const List*& tail) {
if (!amount) {
const List* result = tail;
tail = nullptr;
return result;
}
return insertBulk_(amount - 1, tail = new List{tail});
}
以自动销毁指针,在异常的情况下会泄漏
Finally
现在,我猜,问题已经解决了:
static const shared_ptr<const List> insertBulk(unsigned amount) {
struct TailGuard {
const List* ptr;
~TailGuard() {
List::destroy(this->ptr);
}
} guard{};
const List* result = insertBulk_(amount, guard.ptr);
return amount? shared_ptr<const List>{result, List::destroy}
: nullptr;
}
和g++
成功优化了长列表的递归创建; clang++
; 最终代码是
shared_ptr
在#include <memory>
#include <cassert>
using std::shared_ptr;
class List {
private:
const shared_ptr<const List> tail;
/**
* I need a `tail` to be an instance of `shared_ptr`.
* Separate `List` constructor was created for this purpose.
* It gets a regular pointer to `tail` and wraps it
* into shared pointer.
*
* The `tail` is a reference to pointer,
* because `insertBulk`, which called `insertBulk_`,
* should have an ability to free memory
* in the case of `insertBulk_` fail
* to avoid memory leak.
*/
static const List* insertBulk_(unsigned amount, const List*& tail) {
if (!amount) {
const List* result = tail;
tail = nullptr;
return result;
}
return insertBulk_(amount - 1, tail = new List{tail});
}
unsigned size_(unsigned acc=1) const {
return this->tail? this->tail->size_(acc + 1) : acc;
}
/**
* Destructor needs to be hidden,
* because it causes stack overflow for long lists.
* Custom destruction method `destroy` should be invoked first.
*/
~List() {}
public:
/**
* List needs custom destruction strategy,
* because default destructor causes stack overflow
* in the case of long lists:
* it will recursively remove its items.
*/
List(const List* tail): tail{tail, List::destroy} {}
List(const shared_ptr<const List>& tail): tail{tail} {}
List(const List&) = delete;
List() = delete;
unsigned size() const {
return this->size_();
}
/**
* Public iterface for private `insertBulk_` method.
* It wraps `insertBulk_` result into `shared_ptr`
* with custom destruction function.
*
* Also it creates a guard for tail,
* which will destroy it if something will go wrong.
* `insertBulk_` should store `tail`,
* which is not yet wrapped into `shared_ptr`,
* in the guard, and set it to `nullptr` in the end
* in order to avoid destruction of successfully created list.
*/
static const shared_ptr<const List> insertBulk(unsigned amount) {
struct TailGuard {
const List* ptr;
~TailGuard() {
List::destroy(this->ptr);
}
} guard{};
const List* result = insertBulk_(amount, guard.ptr);
return amount? shared_ptr<const List>{result, List::destroy}
: nullptr;
}
/**
* Custom destruction strategy,
* which should be called in order to delete a list.
*/
static void destroy(const List* list) {
if (!list) return;
shared_ptr<const List> tail = list->tail;
delete list;
/**
* Watching references count allows us to stop,
* when we reached the node,
* which is used by another list.
*
* Also this prevents long loop of construction and destruction,
* because destruction calls this function `destroy` again
* and it will create a lot of redundant entities
* without `tail.use_count() == 1` condition.
*/
for (; tail && tail.use_count() == 1; tail = tail->tail);
}
};
int main() {
/**
* Check whether we can create multiple lists.
*/
const shared_ptr<const List> list{List::insertBulk(1E6)};
const shared_ptr<const List> longList{List::insertBulk(1E7)};
/**
* Check whether we can use a list as a tail for another list.
*/
const shared_ptr<const List> composedList{new List{list}, List::destroy};
/**
* Checking whether creation works well.
*/
assert(list->size() == 1E6);
assert(longList->size() == 1E7);
assert(composedList->size() == 1E6 + 1);
return 0;
}
函数
List
类
main