我正在对使用MICE多次估算的数据运行二元结果变量的逻辑回归。汇总glm模型的系数似乎很简单: imp =小鼠(nhanes2,print = F)
imp$meth
fit0=with(data=imp, glm(hyp~age, family = binomial))
fit1=with(data=imp, glm(hyp~age+chl, family = binomial))
summary(pool(fit1))
但是,我无法找到一种方法来汇集glm生成的其他输出。例如,glm函数产生可用于模型测试的AIC,Null偏差和残差偏差。 游泳池(摘要(FIT1)) ##归集总结1:
Call:
glm(formula = hyp ~ age + chl, family = binomial)
Deviance Residuals:
Min 1Q Median 3Q Max
-1.0117 -0.7095 -0.4862 -0.2169 2.2267
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -5.69937 3.78119 -1.507 0.132
age2 1.34014 1.35545 0.989 0.323
age3 1.55824 1.39266 1.119 0.263
chl 0.01662 0.01749 0.950 0.342
(Dispersion parameter for binomial family taken to be 1)
**Null deviance: 25.020 on 24 degrees of freedom
Residual deviance: 21.898 on 21 degrees of freedom
AIC: 29.898**
Number of Fisher Scoring iterations: 5
我尝试过pool.compare函数,但也无法使用二进制结果变量
pool.compare(fit1,fit0,data = imp,method =" possible")
Error in Summary.factor(c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, :
‘min’ not meaningful for factors
有没有办法使用MICE使用多重插补数据来完成这些事情(或获得对数似然测试输出),或者有没有办法使用另一个像rms这样的包来处理由MICE生成的MI数据?