我已经编写了这个简短的代码,可以从网页上通过REST请求json文件:
<!DOCTYPE html>
<html lang="en" xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta charset="utf-8" />
<title></title>
</head>
<body>
<button type="submit" onclick="UserAction()">Search</button>
<script type="text/javascript" language="javascript">
function UserAction() {
var xhttp = new XMLHttpRequest();
xhttp.open("POST", "http://date.jsontest.com/", true);
xhttp.setRequestHeader("Content-type", "application/json");
xhttp.send();
var response = JSON.parse(xhttp.responseText);
document.write(response);
}
</script>
</body>
</html>
但是,在chrome的java脚本控制台中,我收到以下错误:
VM33:1 Uncaught SyntaxError: Unexpected end of JSON input
at JSON.parse (<anonymous>)
at UserAction (HTMLPage1.html:17)
at HTMLButtonElement.onclick (HTMLPage1.html:9)
但是当我在控制台中检查网络响应时,我可以看到以下格式的响应是正确的,但它也没有显示在网页上:
{
"time": "02:08:35 PM",
"milliseconds_since_epoch": 1508767715990,
"date": "10-23-2017"
}
我不知道是什么原因导致这个问题,有谁知道如何修复它?
答案 0 :(得分:3)
xhttp.send();
是异步的。这意味着当你执行JSON.parse(xhttp.responseText);
时,响应中没有任何内容。您必须使用该活动......
xhttp.onreadystatechange = function() {//Call a function when the state changes.
if(xhttp.readyState == 4 && xhttp.status == 200) {
var response = JSON.parse(xhttp.responseText);
document.write(response);
}
}
答案 1 :(得分:-1)
首先使用JSON.stringify()将JavaScript对象转换为字符串。 然后使用JSON.parse
import tensorflow as tf
from tensorflow.contrib.distributions import Normal
import numpy as np
import matplotlib.pyplot as plt
DNA_SIZE = 1
POP_SIZE = 10
LR = 0.1
N_GENERATION = 50
def F(x):
return x**2
def get_fitness(value):
return -value
mean = tf.Variable(tf.constant(13.), dtype=tf.float32)
sigma = tf.Variable(tf.constant(5.), dtype=tf.float32)
N_dist = Normal(loc=mean, scale=sigma)
make_kids = N_dist.sample([POP_SIZE])
tfkids = tf.placeholder(tf.float32, [POP_SIZE, DNA_SIZE])
tfkids_fit = tf.placeholder(tf.float32, [POP_SIZE])
loss = -tf.reduce_mean(N_dist.log_prob(tfkids) * tfkids_fit)
train_op = tf.train.GradientDescentOptimizer(LR).minimize(loss)
x = np.linspace(-20, 20, 100)
plt.plot(x, F(x))
sess = tf.Session()
init = tf.global_variables_initializer()
sess.run(init)
plt.ion()
for g in range(N_GENERATION):
kids = sess.run(make_kids)
kids_fit = get_fitness(F(kids))
sess.run(train_op, feed_dict={tfkids: kids, tfkids_fit: kids_fit})
if "plot_points" in globals():
plot_points.remove()
plot_points = plt.scatter(kids, F(kids), s=30)
plt.pause(0.05)
plt.ioff()
plt.show()
&#13;