我在Elasticsearch中遇到嵌套聚合问题。我有嵌套字段的映射:
"Topics":{"type":"nested","properties":{
"CategoryLev1":{"type":"text","fields":{"keyword":{"type":"keyword","ignore_above":256}}},
"CategoryLev2":{"type":"text","fields":{"keyword":{"type":"keyword","ignore_above":256}}} }}
索引文件后:
"Topics": [
{
"CategoryRelevancy": "1.0",
"CategoryLev2": "Money",
"CategoryLev1": "Sales"
},
{
"CategoryRelevancy": "2.0",
"CategoryLev2": "Money",
"CategoryLev1": "Sales"
},
{
"CategoryRelevancy": "1.0",
"CategoryLev2": "Electrical",
"CategoryLev1": "Product"
}
]
"Topics": [
{
"CategoryRelevancy": "1.0",
"CategoryLev2": "Money",
"CategoryLev1": "Sales"
},
{
"CategoryRelevancy": "2.0",
"CategoryLev2": "Methods",
"CategoryLev1": "Sales"
},
{
"CategoryRelevancy": "1.0",
"CategoryLev2": "Engine",
"CategoryLev1": "Product"
}
]
如您所见,在我的嵌套数组中,我有两个主题,它们具有Duplicate键和Value字段然后我进行了这样的查询:
{
"size": 10,
"aggregations": {
"resellers": {
"nested": {
"path": "Topics"
},
"aggregations": {
"topicGroup": {
"terms": {
"field": "Topics.CategoryLev1.keyword",
"size": 10
},
"aggregations": {
"Subtopic": {
"terms": {
"field": "Topics.CategoryLev2.keyword"
}
}
}
}
}
}
}
}
然后我得到关于具有主题类别
的组的结果{
"hits": {
"total": 2,
"max_score": 0,
"hits": []
},
"aggregations": {
"resellers": {
"doc_count": 6,
"topicGroup": {
"doc_count_error_upper_bound": 0,
"sum_other_doc_count": 0,
"buckets": [
{
"key": "Sales",
"doc_count": 3,
"Subtopic": {
"doc_count_error_upper_bound": 0,
"sum_other_doc_count": 0,
"buckets": [
{
"key": "Money",
"doc_count": 3
},
{
"key": "Method",
"doc_count": 1
}
]
}
},
{
"key": "Product",
"doc_count": 2,
"Subtopic": {
"doc_count_error_upper_bound": 0,
"sum_other_doc_count": 0,
"buckets": [
{
"key": "Electrical",
"doc_count": 1
},
{
"key": "Engine",
"doc_count": 1
}
]
}
}
]
}
}
}
}
但我想结果像这样
"buckets": [
{
"key": "Sales",
"doc_count": 2,
"Subtopic": {
"buckets": [
{
"key": "Money",
"doc_count": 2
},
{
"key": "Method",
"doc_count": 1
}
]
}
},
{
"key": "Product",
"doc_count": 2,
"Subtopic": {
"buckets": [
{
"key": "Electrical",
"doc_count": 1
},
{
"key": "Engine",
"doc_count": 1
}]
}
}]
提前致谢:)