有没有办法在Tensorflow中完成这种切片方法(使用numpy显示的例子)?
z = np.random.random((3,7,7,12))
x = z[...,[0,5]]
这样
x_hat = np.concatenate([z[...,[0]], z[...,[5]]], 3)
assert np.all(x == x_hat)
x.shape # (3, 7, 7, 2)
Tensorflow中的,此操作
tfz = tf.constant(z)
i = np.array([0,5] dtype=np.int32)
tfx = tfz[...,i]
抛出错误
ValueError: Shapes must be equal rank, but are 0 and 1
From merging shape 0 with other shapes. for 'strided_slice/stack_1' (op: 'Pack') with input shapes: [], [2].
答案 0 :(得分:1)
您需要重塑以使连接结果与原始形状(前3个维度)保持一致。
z = np.arange(36)
tfz = tf.reshape(tf.constant(z), [2, 3, 2, 3])
slice1 = tf.reshape(tfz[:,:,:,1], [2, 3, -1, 1])
slice2 = tf.reshape(tfz[:,:,:,2], [2, 3, -1, 1])
slice = tf.concat([slice1, slice2], axis=3)
with tf.Session() as sess:
print sess.run([tfz, slice])
> [[[[ 0, 1, 2],
[ 3, 4, 5]],
[[ 6, 7, 8],
[ 9, 10, 11]],
[[12, 13, 14],
[15, 16, 17]]],
[[[18, 19, 20],
[21, 22, 23]],
[[24, 25, 26],
[27, 28, 29]],
[[30, 31, 32],
[33, 34, 35]]]]
# Get the last two columns
> [[[[ 1, 2],
[ 4, 5]],
[[ 7, 8],
[10, 11]],
[[13, 14],
[16, 17]]],
[[[19, 20],
[22, 23]],
[[25, 26],
[28, 29]],
[[31, 32],
[34, 35]]]]
答案 1 :(得分:1)
像格力所说的形状错误。不幸的是,似乎没有像我希望的那样简单的方法,但这是我提出的通用解决方案:
list.files(path, pattern, full.names = T) %>%
assign("file_name", value = ., pos = 1) %>%
map(image_read) %>%
map2(file_name, image_annotate) %>%
image_join() %>%
image_animate(fps = 1) %>%
image_write("animated.gif")
答案 2 :(得分:1)
怎么样:
x = tf.stack([tfz[..., i] for i in [0,5]], axis=-1)
这对我有用:
z = np.random.random((3,7,7,12))
tfz = tf.constant(z)
x = tf.stack([tfz[..., i] for i in [0,5]], axis=-1)
x_hat = np.concatenate([z[...,[0]], z[...,[5]]], 3)
with tf.Session() as sess:
x_run = sess.run(x)
assert np.all(x_run == x_hat)