我有几种具有关联值的编号训练类型。
可能的培训类型:
小:0.5
大:0.7
小:0.7
大:0.8
等...
如果选择训练类型编号1,如何确定用于计算的相关值对?例如,如果培训类型为1:
small = (220 - 60)*0.5
big = (220 - 60)*0.7
我想知道如何编写代码,以便后续计算中使用的值根据所选的训练类型而有所不同。
到目前为止我所拥有的:
training = str(input("Choose training type (1, 2, 3): "))
s1 = 0.5
s2 = 0.7
s3 = 0.8
b1 = 0.7
b2 = 0.8
b3 = 0.88
spulse = "Small pulse: "
bpulse = "Big pulse: "
if training == 1:
small = (220 - 60) * s1
big = (220 - 60) * b1
elif training == 2:
small = (220 - 60) * s2
big = (220 - 60) * b2
elif training == 3:
small = (220 - 60) * s3
big = (220 - 60) * b3
print(spulse + str(small) + bpulse + str(big))
答案 0 :(得分:0)
如果您使用内置输入功能,您可以执行以下操作:
question=input('Choose type 1 or type 2: ')
if question=='1':
small=(220-60)*0.5
big=(220-60)*0.7
type1_total=small+big
print(type1_total)
结果:
192.0
答案 1 :(得分:0)
如果您将input
转换为int
而不是str
并且在决策范围之外初始化small
和big
,则您的代码将有效这样的陈述:
training = int(input("Choose training type (1, 2, 3): "))
s1 = 0.5
s2 = 0.7
s3 = 0.8
b1 = 0.7
b2 = 0.8
b3 = 0.88
spulse = "Small pulse: "
bpulse = "Big pulse: "
small = 0
big = 0
if training == 1:
small = (220 - 60) * s1
big = (220 -60) * b1
elif training == 2:
small = (220 - 60) * s2
big = (220 -60) * b2
elif training == 3:
small = (220 - 60) * s3
big = (220 -60) * b3
但是,一种替代方法可能如下:
value = 220 - 60
type_ = 0
types = {1 : [0.5, 0.7],
2 : [0.7, 0.8],
3 : [0.8, 0.88]}
while type_ not in types:
type_ = int(input("Pick a type: "))
if type_ not in types:
print("Invalid type.")
else:
big = value * types[type_][0]
small = value * types[type_][1]
print("Big = " + str(big))
print("Small = " + str(small))
这样,如果用户在提示符处输入1
作为type_
的值,则输出为:
Big = 80.0
Small = 112.0
但是,如果用户在提示符处输入2
作为type_
的值,则输出为:
Big = 112.0
Small = 128.0
如果用户在提示符处输入3
作为type_
的值,则输出为:
Big = 128.0
Small = 140.8
对于输入的任何其他值,输出为print("Invalid type.")
。
答案 2 :(得分:0)
在Python 3中,input()
函数返回一个字符串(与Python 2不同),但是所有if training == ...
语句都将它返回的值与一个整数进行比较,因此它们总是会失败。要修改第一行,如下所示:
#training = str(input("Choose training type (1, 2, 3): ")) # NOT THIS.
training = int(input("Choose training type (1, 2, 3): ")) # Convert to integer.
s1 = 0.5
s2 = 0.7
s3 = 0.8
b1 = 0.7
b2 = 0.8
b3 = 0.88
spulse = "Small pulse: "
bpulse = " Big pulse: "
if training == 1:
small = (220 - 60) * s1
big = (220 - 60) * b1
elif training == 2:
small = (220 - 60) * s2
big = (220 - 60) * b2
elif training == 3:
small = (220 - 60) * s3
big = (220 - 60) * b3
print(spulse + str(small) + bpulse + str(big))
产生的结果:
Small pulse: 80.0 Big pulse: 112.0
<强>更新强>
最好使用Python字典来执行此操作。这样做 - 被称为“数据驱动” - 通过添加更多培训类型和/或具有与每个培训类型相关联的更多值,也将使调试和扩展更容易。我认为这也使代码更清晰,更具可读性。
这显示了我的意思:
# Dictionary associating each training type to associated values.
training_types = {
"1": {"s": 0.5, "b": 0.7},
"2": {"s": 0.7, "b": 0.8},
"3": {"s": 0.8, "b": 0.88}
}
choice = None
while choice not in training_types:
choice = input("Choose training type (1, 2, or 3): ")
training_type = training_types[choice]
difference = 220 - 60
small = difference * training_type["s"]
big = difference * training_type["b"]
print("Small pulse: {} Big pulse: {}".format(small, big))