TensorFlow MNIST for Experts精度低

时间:2017-10-21 22:48:25

标签: python tensorflow mnist

我已经按照tensorflow MNIST for Experts的教程进行了操作。我编写如下代码,这是教程的副本。但是,当我运行我的代码时,准确率只有92%,86%,......它在我的Mac上只运行1或2分钟非常快。随着步长的增加,准确度

step 0, training accuracy 0.1
step 100, training accuracy 0.84
step 200, training accuracy 0.84
step 300, training accuracy 0.9
step 400, training accuracy 0.88
step 500, training accuracy 0.92
step 600, training accuracy 0.98
step 700, training accuracy 0.96
step 800, training accuracy 0.96
step 900, training accuracy 0.96
step 1000, training accuracy 0.96
step 1100, training accuracy 0.94
step 1200, training accuracy 0.96

但是当我运行官方代码mnist_deep.py时。它的工作非常缓慢,输出是

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

from tensorflow.examples.tutorials.mnist import input_data

import tensorflow as tf

def weight_variable(shape):
    initial = tf.truncated_normal(shape, stddev=0.1)
    return tf.Variable(initial)

def bias_variable(shape):
    initial = tf.constant(0.1, shape=shape)
    return tf.Variable(initial)

def conv2d(x, W):
    return tf.nn.conv2d(x, W, strides=[1,1,1,1], padding='SAME')

def max_pool_2x2(x):
    return tf.nn.max_pool(x, ksize=[1,2,2,1], strides=[1,2,2,1], padding='SAME')

def main(_):
    mnist = input_data.read_data_sets("/MNIST_data/", one_hot=True)

    x = tf.placeholder(tf.float32, [None, 784])
    y_ = tf.placeholder(tf.float32, [None, 10])

    x_image = tf.reshape(x, [-1, 28, 28, 1])

    W_conv1 = weight_variable([5, 5, 1, 32])
    b_conv1 = bias_variable([32])
    h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
    h_pool1 = max_pool_2x2(h_conv1)

    W_conv2 = weight_variable([5, 5, 32, 64])
    b_conv2 = bias_variable([64])
    h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
    h_pool2 = max_pool_2x2(h_conv2)

    W_fc1 = weight_variable([7 * 7 * 64, 1024])
    b_fc1 = bias_variable([1024])
    h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])
    h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)

    keep_prob = tf.placeholder(tf.float32)
    h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)

    W_fc2 = weight_variable([1024, 10])
    b_fc2 = bias_variable([10])
    y_conv = tf.matmul(h_fc1_drop, W_fc2) + b_fc2

    cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y_conv))
    train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
    correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y_, 1))
    accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))

    with tf.Session() as sess:
        sess.run(tf.global_variables_initializer())
        for i in range(20000):
            batch = mnist.train.next_batch(50)
            if i % 100 == 0:
                train_accuracy = accuracy.eval(feed_dict={x: batch[0], y_: batch[1], keep_prob: 1.0})
                print('step %d, training accuracy %g' % (i, train_accuracy))
                train_step.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5})

        print('test accuracy %g' % accuracy.eval(feed_dict={x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0}))

if __name__ == '__main__':
    tf.app.run(main=main)

效果很好。我比较我的代码和mnist_deep.py。唯一不同的是他们使用。为什么我的代码工作得那么糟糕?为什么他们应该使用?以下是我的代码。

appendListItem

1 个答案:

答案 0 :(得分:0)

您已将train_step.run电话放在if i % 100 == 0:阻止内。