尝试实现XGBoost来确定最重要的变量,我对数组有一些错误。
我的完整代码如下
from numpy import loadtxt
from numpy import sort
import pandas as pd
from xgboost import XGBClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
from sklearn.feature_selection import SelectFromModel
df = pd.read_csv('data.txt')
array=df.values
X= array[:,0:330]
Y = array[:,330]
X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.33, random_state=7)
model = XGBClassifier()
model.fit(X_train, y_train)
y_pred = model.predict(X_test)
predictions = [round(value) for value in y_pred]
我收到以下错误:
TypeError: type str doesn't define __round__ method
我该怎么办?
答案 0 :(得分:2)
y_train
中的一些标签很可能实际上是字符串而不是数字。 sklearn
和xgboost
不要求标签为数字。
尝试检查y_pred
。
from collections import Counter
Counter([type(value) for value in y_pred])
以下是数字标签
的含义示例import numpy as np
from sklearn.ensemble import GradientBoostingClassifier
# test with numeric labels
x = np.vstack([np.arange(100), np.sort(np.random.normal(10, size=100))]).T
y = np.hstack([np.zeros(50, dtype=int), np.ones(50, dtype=int)])
model = GradientBoostingClassifier()
model.fit(x,y)
model.predict([[10,7]])
# returns an array with a numeric
array([0])
此处使用字符串标签(相同的x
数据)
y = ['a']*50 + ['b']*50
model.fit(x,y)
model.predict([[10,7]])
# returns an array with a string label
array(['a'], dtype='<U1')
两者都是价值标签。但是,当您尝试在字符串变量上使用round
时,您会得到您所看到的错误。
round('a')
TypeError: type str doesn't define __round__ method
答案 1 :(得分:0)
尝试将“值”表示为整数:
predictions = [round(int(value)) for value in y_pred]
为我工作