我有以下数据框:
library(tidyverse)
dat <- structure(list(motif_and_gene_name = c("FCCT", "XXX4", "XXX2",
"FCCT", "XXX4", "XXX2", "FCCT", "XXX4", "XXX2", "FCCT", "XXX4",
"XXX2", "FCCT", "XXX4", "XXX2", "FCCT", "XXX4", "XXX2"),
tissue = c("DA", "DA", "DA", "MB",
"MB", "MB", "VL", "VL", "VL", "UP",
"UP", "UP", "BU", "BU", "BU",
"TV", "TV", "TV"), motif_enrichment = c(4740,
964.2, 539.2, 6634, 1860, 1150, 6312, 2146, 1432, 5336, 2282,
1381, 2796, 1947, 1175, 8190, 1576, 926.8), expression_tpm = c(5.095,
15.1825, 1.4225, 7.27, 23.7125, 6.85, 4.8775, 27.17, 3.0025,
6.0025, 23.3725, 5.1425, 5.4525, 20.215, 4.695, 6.44, 22.04,
4.24)), class = c("tbl_df", "tbl", "data.frame"), row.names = c(NA,
-18L), .Names = c("motif_and_gene_name", "tissue", "motif_enrichment",
"expression_tpm"))
dat
#> # A tibble: 18 x 4
#> motif_and_gene_name tissue motif_enrichment expression_tpm
#> <chr> <chr> <dbl> <dbl>
#> 1 FCCT DA 4740.0 5.0950
#> 2 XXX4 DA 964.2 15.1825
#> 3 XXX2 DA 539.2 1.4225
#> 4 FCCT MB 6634.0 7.2700
#> 5 XXX4 MB 1860.0 23.7125
#> 6 XXX2 MB 1150.0 6.8500
#> 7 FCCT VL 6312.0 4.8775
#> 8 XXX4 VL 2146.0 27.1700
#> 9 XXX2 VL 1432.0 3.0025
#> 10 FCCT UP 5336.0 6.0025
#> 11 XXX4 UP 2282.0 23.3725
#> 12 XXX2 UP 1381.0 5.1425
#> 13 FCCT BU 2796.0 5.4525
#> 14 XXX4 BU 1947.0 20.2150
#> 15 XXX2 BU 1175.0 4.6950
#> 16 FCCT TV 8190.0 6.4400
#> 17 XXX4 TV 1576.0 22.0400
#> 18 XXX2 TV 926.8 4.2400
使用以下代码
mycol <- c("#3D1E1F","#FE677E","#F19068","#E8A99D","#FCDED4")
nof_vals <- length(dat$expression_tpm)
dat %>%
ggplot(aes(x=tissue,y=motif_and_gene_name, size=motif_enrichment, colour=factor(expression_tpm))) +
geom_point(stat = "identity") +
scale_colour_manual(values = colorRampPalette(mycol)(nof_vals)) +
theme_minimal()
我可以创建:
圆圈的大小由motif enrichment
决定,颜色范围由expression tpm
决定。请注意,现在有4种尺寸的圆圈和18种颜色。如何将尺度和颜色的刻度固定为N = 5,并使用预定义的断点,如:
size range: motif_enrichment <=100 101-500 501-1000 1001-1500 >1500
color range: expression_tpm <=1 2-5 6-10 11-15 >15
答案 0 :(得分:2)
您必须在定义中断的位置创建变量。使用cut
。
dat$expr_brks <- cut(dat$expression_tpm, breaks = c(-Inf, 1, 5, 10, 16, 20, Inf))
dat$motif_brks <- cut(dat$motif_enrichment, breaks = c(-Inf, 100, 500, 1000, 1500, 2000, Inf))
dat %>%
ggplot(aes(x = tissue,y = motif_and_gene_name, size = motif_brks, color = expr_brks)) +
geom_point(stat = "identity") +
scale_color_manual(values = colorRampPalette(mycol)(length(levels(dat$expr_brks)))) +
theme_minimal()