Spark Scala根据另一个RDD的列删除一个RDD中的行

时间:2017-10-19 21:00:33

标签: scala apache-spark

我对scala和spark很新,不知道如何开始。

我有一个看起来像这样的RDD:

1,2,3,11
2,1,4,12
1,4,5,13
3,5,6,12

另一个看起来像这样:

2,1
1,2

我想过滤第一个RDD,以便删除与第二个RDD的前两列匹配的任何行。输出应如下所示:

 1,4,5,13
 3,5,6,12

2 个答案:

答案 0 :(得分:1)

// input rdds
val rdd1 = spark.sparkContext.makeRDD(Seq((1,2,3,11), (2,1,3,12), (1,4,5,13), (3,5,6,12)))
val rdd2 = spark.sparkContext.makeRDD(Seq((1,2), (2,1)))

// manipulate the 2 rdds as a key, val pair
// the key of the first rdd is a tuple pair of first two fields, the val contains all the fields
// the key of the second rdd is a tuple of first two fields, the val is just null
// then we could perform joins on their key
val rdd1_key = rdd1.map(record => ((record._1, record._2), record))
val rdd2_key = rdd2.map(record => (record, null))

// 1. perform left outer join, the record become (key, (val1, val2))
// 2. filter, keep those records which do not have a join
// if there is no join, val2 will be None, otherwise val2 will be null, which is the value we hardcoded from previous step
// 3. get val1 
rdd1_key.leftOuterJoin(rdd2_key)
  .filter(record => record._2._2 == None)
  .map(record => record._2._1)
  .collect().foreach(println(_))

// result
(1,4,5,13)
(3,5,6,12)

由于

答案 1 :(得分:1)

我个人更喜欢dataframe/dataset方式,因为它们是rdd的优化形式,以及更多内置函数,类似于传统数据库。

以下是dataframe方式:

第一步是将rdds转换为dataframes

import sqlContext.implicits._
val df1 = rdd1.toDF("col1", "col2", "col3", "col4")
val df2 = rdd2.toDF("col1", "col2")

第二步是在column中添加新的dataframe2以过滤条件检查

import org.apache.spark.sql.functions._
val tempdf2 = df2.withColumn("check", lit("check"))

最后一步是join两个dataframesfilterdrop不必要的rowscolumns

val finalDF = df1.join(tempdf2, Seq("col1", "col2"), "left")
                          .filter($"check".isNull)
                          .drop($"check")

你应该有dataframe作为

+----+----+----+----+
|col1|col2|col3|col4|
+----+----+----+----+
|3   |5   |6   |12  |
|1   |4   |5   |13  |
+----+----+----+----+

现在,您可以使用rdd转换为finalDF.rdd,也可以使用dataframe继续进行进一步处理。

我希望答案很有帮助