from pyspark.sql import Row, functions as F
row = Row("UK_1","UK_2","Date","Cat",'Combined')
agg = ''
agg = 'Cat'
tdf = (sc.parallelize
([
row(1,1,'12/10/2016',"A",'Water^World'),
row(1,2,None,'A','Sea^Born'),
row(2,1,'14/10/2016','B','Germ^Any'),
row(3,3,'!~2016/2/276','B','Fin^Land'),
row(None,1,'26/09/2016','A','South^Korea'),
row(1,1,'12/10/2016',"A",'North^America'),
row(1,2,None,'A','South^America'),
row(2,1,'14/10/2016','B','New^Zealand'),
row(None,None,'!~2016/2/276','B','South^Africa'),
row(None,1,'26/09/2016','A','Saudi^Arabia')
]).toDF())
cols = F.split(tdf['Combined'], '^')
tdf = tdf.withColumn('column1', cols.getItem(0))
tdf = tdf.withColumn('column2', cols.getItem(1))
tdf.show(truncate = False )
以上是我的示例代码。
由于某种原因,它没有按^字符拆分列。
有什么建议吗?
答案 0 :(得分:3)
模式是正则表达式,请参阅split;并且^
是一个匹配 regex 中字符串开头的锚点,为了按字面意思匹配,你需要将其转义:
cols = F.split(tdf['Combined'], r'\^')
tdf = tdf.withColumn('column1', cols.getItem(0))
tdf = tdf.withColumn('column2', cols.getItem(1))
tdf.show(truncate = False)
+----+----+------------+---+-------------+-------+-------+
|UK_1|UK_2|Date |Cat|Combined |column1|column2|
+----+----+------------+---+-------------+-------+-------+
|1 |1 |12/10/2016 |A |Water^World |Water |World |
|1 |2 |null |A |Sea^Born |Sea |Born |
|2 |1 |14/10/2016 |B |Germ^Any |Germ |Any |
|3 |3 |!~2016/2/276|B |Fin^Land |Fin |Land |
|null|1 |26/09/2016 |A |South^Korea |South |Korea |
|1 |1 |12/10/2016 |A |North^America|North |America|
|1 |2 |null |A |South^America|South |America|
|2 |1 |14/10/2016 |B |New^Zealand |New |Zealand|
|null|null|!~2016/2/276|B |South^Africa |South |Africa |
|null|1 |26/09/2016 |A |Saudi^Arabia |Saudi |Arabia |
+----+----+------------+---+-------------+-------+-------+
答案 1 :(得分:0)
尝试使用 '\^'
。此外,当您使用 '.'
点作为分母时,情况也是一样。