我开始使用简单的线性回归式网络,用Tensorflow编写,主要基于他们的MNIST初学者教程。有7个输入变量和1个输出变量,所有这些都是连续的。使用这个模型,输出都在1左右徘徊,这是有道理的,因为目标输出集主要由值1控制。这是测试数据生成的输出样本:
[ 0.95340264]
[ 0.94097006]
[ 0.96644485]
[ 0.95954728]
[ 0.93524933]
[ 0.94564033]
[ 0.94379318]
[ 0.92746377]
[ 0.94073343]
[ 0.98421943]
然而,准确度从未达到约84%,因此我决定添加一个隐藏层。现在输出完全收敛于单个值,例如:
[ 0.96631247]
[ 0.96631247]
[ 0.96631247]
[ 0.96631247]
[ 0.96631247]
[ 0.96631247]
[ 0.96631247]
[ 0.96631247]
[ 0.96631247]
[ 0.96631247]
并且准确度保持在82-84%之间。当在目标输出为1的多次训练过程中检查获得的y值,目标y值和来自单行数据的交叉熵时,所获得的y值逐渐接近1:
[ 0.]
[ 1.]
0.843537
[ 0.03999992]
[ 1.]
0.803543
[ 0.07999983]
[ 1.]
0.763534
[ 0.11999975]
[ 1.]
0.723541
[ 0.15999967]
[ 1.]
0.683544
然后在到达目标后徘徊在1左右:
[ 0.99136335]
[ 1.]
0.15912
[ 1.00366712]
[ 1.]
0.16013
[ 0.96366721]
[ 1.]
0.167638
[ 0.97597092]
[ 1.]
0.163856
[ 0.98827463]
[ 1.]
0.160069
然而,当目标y值为0.5时,它表现为目标为1,接近0.5然后超调:
[ 0.47648361]
[ 0.5]
0.378556
[ 0.51296818]
[ 0.5]
0.350674
[ 0.53279752]
[ 0.5]
0.340844
[ 0.55262685]
[ 0.5]
0.331016
[ 0.57245618]
[ 0.5]
0.321187
当交叉熵实际上达到目标时,交叉熵继续减小:
[ 0.94733644]
[ 0.5]
0.168714
[ 0.96027154]
[ 0.5]
0.164533
[ 0.97320664]
[ 0.5]
0.16035
[ 0.98614174]
[ 0.5]
0.156166
[ 0.99907684]
[ 0.5]
0.151983
打印出测试数据的获得值,目标值和目标距离,无论目标y如何,都显示相同的y:
5
[ 0.98564607]
[ 0.5]
[ 0.48564607]
6
[ 0.98564607]
[ 0.60000002]
[ 0.38564605]
7
[ 0.98564607]
[ 1.]
[ 0.01435393]
8
[ 0.98564607]
[ 1.]
[ 0.01435393]
9
[ 0.98564607]
[ 1.]
[ 0.01435393]
代码如下。 a)为什么在训练部分期间,算法将目标y值视为始终为1,b)为什么在测试部分期间产生相同的输出?即使它"认为"目标始终为1,测试输出应至少有一些变化,如训练输出中所示。
import argparse
import dataset
import numpy as np
import os
import sys
import tensorflow as tf
FLAGS = None
def main(_):
num_fields = 7
batch_size = 100
rating_field = 7
outputs = 1
hidden_units = 7
train_data = dataset.Dataset("REPPED_RATING_TRAINING.txt", " ", num_fields, rating_field)
td_len = len(train_data.data)
test_data = dataset.Dataset("REPPED_RATING_TEST.txt", " ", num_fields, rating_field)
test_len = len(test_data.data)
test_input = test_data.data[:, :num_fields].reshape(test_len, num_fields)
test_target = test_data.fulldata[:, rating_field ].reshape(test_len, 1)
graph = tf.Graph()
with graph.as_default():
x = tf.placeholder(tf.float32, [None, num_fields], name="x")
W1 = tf.Variable(tf.zeros([num_fields, hidden_units]))
b1 = tf.Variable(tf.zeros([hidden_units]))
W2 = tf.Variable(tf.zeros([hidden_units, outputs]))
b2 = tf.Variable(tf.zeros([outputs]))
H = tf.add(tf.matmul(x, W1), b1, name="H")
y = tf.add(tf.matmul(H, W2), b2, name="y")
y_ = tf.placeholder(tf.float32, [None, outputs])
yd = tf.abs(y_ - y)
cross_entropy = tf.reduce_mean(yd)
train_step = tf.train.GradientDescentOptimizer(0.04).minimize(cross_entropy)
init = tf.global_variables_initializer()
saver = tf.train.Saver()
with tf.Session(graph=graph) as sess:
sess.run(init)
train_input, train_target = train_data.batch(td_len)
for _ in range(FLAGS.times):
ts, yo, yt, ce = sess.run([train_step, y, y_, cross_entropy], feed_dict={x: train_input, y_:train_target})
#print obtained y, target y, and cross entropy from a given row over 10 training instances
print(yo[3])
print(yt[3])
print(ce)
print()
checkpoint_file = os.path.join(FLAGS.model_dir, 'saved-checkpoint')
print("\nWriting checkpoint file: " + checkpoint_file)
saver.save(sess, checkpoint_file)
test_input, test_target = test_data.batch(test_len)
ty, ty_, tce, tyd = sess.run(
[y, y_, cross_entropy, yd],
feed_dict={x : test_input, y_: test_target})
#print obtained y, target y, and distance to target for 10 random test rows
for ix in range(10):
print(ix)
print(ty[ix])
print(ty_[ix])
print(tyd[ix])
print()
print('Ran times: ' + str(FLAGS.times))
print('Acc: ' + str(1-tce))
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--times', type=int, default=100,
help='Number of passes to train')
parser.add_argument('--model_dir', type=str,
default=os.path.join('.', 'tmp'),
help='Directory for storing model info')
FLAGS, unparsed = parser.parse_known_args()
tf.app.run(main=main, argv=[sys.argv[0]] + unparsed)
答案 0 :(得分:1)
您的代码中存在多个问题,其中许多问题可能导致网络无法正常训练:
此外,如果您没有规范化输入和输出,您也应该这样做。