大家好,我有一个数据框,每个日期都是最新的,每天我需要将新的qte和新的ca添加到旧的并更新日期。 所以我需要更新已经存在的那些并添加新的。这是我最后想要的一个例子
val histocaisse = spark.read
.format("csv")
.option("header", "true") //reading the headers
.load("C:/Users/MHT/Desktop/histocaisse_dte1.csv")
val hist = histocaisse
.withColumn("pos_id", 'pos_id.cast(LongType))
.withColumn("article_id", 'pos_id.cast(LongType))
.withColumn("date", 'date.cast(DateType))
.withColumn("qte", 'qte.cast(DoubleType))
.withColumn("ca", 'ca.cast(DoubleType))
val histocaisse2 = spark.read
.format("csv")
.option("header", "true") //reading the headers
.load("C:/Users/MHT/Desktop/histocaisse_dte2.csv")
val hist2 = histocaisse2.withColumn("pos_id", 'pos_id.cast(LongType))
.withColumn("article_id", 'pos_id.cast(LongType))
.withColumn("date", 'date.cast(DateType))
.withColumn("qte", 'qte.cast(DoubleType))
.withColumn("ca", 'ca.cast(DoubleType))
hist2.show(false)
+------+----------+----------+----+----+
|pos_id|article_id|date |qte |ca |
+------+----------+----------+----+----+
|1 |1 |2000-01-07|2.5 |3.5 |
|2 |2 |2000-01-07|14.7|12.0|
|3 |3 |2000-01-07|3.5 |1.2 |
+------+----------+----------+----+----+
+------+----------+----------+----+----+
|pos_id|article_id|date |qte |ca |
+------+----------+----------+----+----+
|1 |1 |2000-01-08|2.5 |3.5 |
|2 |2 |2000-01-08|14.7|12.0|
|3 |3 |2000-01-08|3.5 |1.2 |
|4 |4 |2000-01-08|3.5 |1.2 |
|5 |5 |2000-01-08|14.5|1.2 |
|6 |6 |2000-01-08|2.0 |1.25|
+------+----------+----------+----+----+
+------+----------+----------+----+----+
|pos_id|article_id|date |qte |ca |
+------+----------+----------+----+----+
|1 |1 |2000-01-08|5.0 |7.0 |
|2 |2 |2000-01-08|39.4|24.0|
|3 |3 |2000-01-08|7.0 |2.4 |
|4 |4 |2000-01-08|3.5 |1.2 |
|5 |5 |2000-01-08|14.5|1.2 |
|6 |6 |2000-01-08|2.0 |1.25|
+------+----------+----------+----+----+
我在这里做了什么
val histoCombinaison2=hist2.join(hist,Seq("article_id","pos_id"),"left")
.groupBy("article_id","pos_id").agg((hist2("qte")+hist("qte")) as ("qte"),(hist2("ca")+hist("ca")) as ("ca"),hist2("date"))
histoCombinaison2.show()
我得到了以下异常
Exception in thread "main" org.apache.spark.sql.AnalysisException: expression '`qte`' is neither present in the group by, nor is it an aggregate function. Add to group by or wrap in first() (or first_value) if you don't care which value you get.;
at org.apache.spark.sql.catalyst.analysis.CheckAnalysis$class.failAnalysis(CheckAnalysis.scala:40)
at org.apache.spark.sql.catalyst.analysis.Analyzer.failAnalysis(Analyzer.scala:58)
at org.apache.spark.sql.catalyst.analysis.CheckAnalysis$$anonfun$checkAnalysis$1.org$apache$spark$sql$catalyst$analysis$CheckAnalysis$class$$anonfun$$checkValidAggregateExpression$1(CheckAnalysis.scala:218)
答案 0 :(得分:0)
location
感谢。
答案 1 :(得分:0)
正如我已经提到您的评论,您应该定义schema
并将其用于阅读csv
至dataframe
import sqlContext.implicits._
import org.apache.spark.sql.types._
val schema = StructType(Seq(
StructField("pos_id", LongType, true),
StructField("article_id", LongType, true),
StructField("date", DateType, true),
StructField("qte", LongType, true),
StructField("ca", DoubleType, true)
))
val hist1 = sqlContext.read
.format("csv")
.option("header", "true")
.schema(schema)
.load("C:/Users/MHT/Desktop/histocaisse_dte1.csv")
hist1.show
val hist2 = sqlContext.read
.format("csv")
.option("header", "true") //reading the headers
.schema(schema)
.load("C:/Users/MHT/Desktop/histocaisse_dte2.csv")
hist2.show
然后你应该使用when
函数来定义你需要实现的逻辑
val df = hist2.join(hist1, Seq("article_id", "pos_id"), "left")
.select($"pos_id", $"article_id",
when(hist2("date").isNotNull, hist2("date")).otherwise(when(hist1("date").isNotNull, hist1("date")).otherwise(lit(null))).alias("date"),
(when(hist2("qte").isNotNull, hist2("qte")).otherwise(lit(0)) + when(hist1("qte").isNotNull, hist1("qte")).otherwise(lit(0))).alias("qte"),
(when(hist2("ca").isNotNull, hist2("ca")).otherwise(lit(0)) + when(hist1("ca").isNotNull, hist1("ca")).otherwise(lit(0))).alias("ca"))
我希望答案很有帮助