使用bazel

时间:2017-10-19 16:24:55

标签: windows tensorflow bazel tensorflow-gpu

我正在尝试通过bazel在Windows 10 64bit上使用CUDA支持编译TensorFlow。 这就是我的系统设置方式:

  • Windows 10 64位
  • 具有CUDA功能的Nvidia GeForce 1050 6.1
  • CUDA Toolkit v8.0 - > C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v8.0
  • cuDNN v6.0 - > C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v8.0
  • bazel 0.7.0(更名为bazel.exe) - > C:\Users\eliam\bazel\0.7.0
  • MSYS2 64bit
  • TensorFlow主分支 - > C:\Users\eliam\tensorflow

我也已经设置了这些环境变量:

BAZEL_PYTHON=C:/Users/eliam/Miniconda3
BAZEL_SH=C:/msys64/usr/bin/bash.exe
BAZEL_VC=C:/Program Files (x86)/Microsoft Visual Studio/2017/BuildTools/VC
BAZEL_VS=C:/Program Files (x86)/Microsoft Visual Studio 14.0
CUDA_PATH=C:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v8.0
CUDA_TOOLKIT_PATH=C:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v8.0
LD_LIBRARY_PATH=C:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v8.0/lib/x64
PYTHON_BIN_PATH=C:/Users/eliam/Miniconda3/python.exe
PYTHON_PATH=C:/Users/eliam/Miniconda3/python.exe
PYTHONPATH=C:/Users/eliam/Miniconda3/python.exe
PYTHON_LIB_PATH=C:/Users/eliam/Miniconda3/lib/site-packages
PATH=C:\Users\eliam\bazel\0.7.0;C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v8.0;C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v8.0\bin;C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v8.0\lib\x64;C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v8.0\include;%PATH%

Bazel的设置包含其网站(https://docs.bazel.build/versions/master/install-windows.html

所需的所有步骤

MSYS2已设置其网站所需的所有步骤(http://www.msys2.org/

我设法完成configure.py而没有问题。

python ./configure.py
You have bazel 0.7.0 installed.
Do you wish to build TensorFlow with XLA JIT support? [y/N]:
No XLA JIT support will be enabled for TensorFlow.

Do you wish to build TensorFlow with GDR support? [y/N]:
No GDR support will be enabled for TensorFlow.

Do you wish to build TensorFlow with VERBS support? [y/N]:
No VERBS support will be enabled for TensorFlow.

Do you wish to build TensorFlow with CUDA support? [y/N]: y
CUDA support will be enabled for TensorFlow.

Please specify the CUDA SDK version you want to use, e.g. 7.0. [Leave empty to default to CUDA 8.0]:


Please specify the cuDNN version you want to use. [Leave empty to default to cuDNN 6.0]:


Please specify the location where cuDNN 6 library is installed. Refer to README.md for more details. [Default is C:/Program Files/NVIDIA                 GPU Computing Toolkit/CUDA/v8.0]:


Please specify a list of comma-separated Cuda compute capabilities you want to build with.
You can find the compute capability of your device at: https://developer.nvidia.com/cuda-gpus.
Please note that each additional compute capability significantly increases your build time and binary size. [Default is: 3.5,5.2]


Do you wish to build TensorFlow with MPI support? [y/N]:
No MPI support will be enabled for TensorFlow.

Please specify optimization flags to use during compilation when bazel option "--config=opt" is specified [Default is -march=native]:


Add "--config=mkl" to your bazel command to build with MKL support.
Please note that MKL on MacOS or windows is still not supported.
If you would like to use a local MKL instead of downloading, please set the environment variable "TF_MKL_ROOT" every time before build.
Configuration finished

之后,我使用以下命令设置了一些其他环境变量:

set BUILD_OPTS='--cpu=x64_windows_msvc --host_cpu=x64_windows_msvc --copt=/w --verbose_failures --experimental_ui --config=cuda'

为了防止此错误

$ bazel build -c opt --config=cuda --verbose_failures --subcommands //tensorflow/cc:tutorials_example_trainer
..............
WARNING: The lower priority option '-c opt' does not override the previous value '-c opt'.
____Loading package: tensorflow/cc
____Loading package: @local_config_cuda//crosstool
____Loading package: @local_config_xcode//
ERROR: No toolchain found for cpu 'x64_windows'. Valid cpus are: [
  k8,
  piii,
  arm,
  darwin,
  ppc,
].
____Elapsed time: 10.196s

然后我使用以下命令启动bazel构建

bazel build -c opt $BUILD_OPTS //tensorflow/tools/pip_package:build_pip_package

这就是问题的开始。这是完整日志的link

知道为什么吗?

1 个答案:

答案 0 :(得分:0)

日志的重要部分是:

ERROR: C:/msys64/home/eliam/tensorflow/tensorflow/stream_executor/BUILD:52:1: C++ compilation of rule '//tensorflow/stream_executor:cuda_platform' failed (Exit 2).
tensorflow/stream_executor/cuda/cuda_platform.cc(48): error C3861: 'strcasecmp': identifier not found
tensorflow/stream_executor/cuda/cuda_platform.cc(50): error C3861: 'strcasecmp': identifier not found
tensorflow/stream_executor/cuda/cuda_platform.cc(52): error C3861: 'strcasecmp': identifier not found
Target //tensorflow/cc:tutorials_example_trainer failed to build

tensorflow/stream_executor/cuda/cuda_platform.cc(48)中有strcmp

编译器抱怨strcasecmp,因此必须#define strcmpstrcasecmp。无论如何,你能用--verbose_failures运行构建吗?这将显示Bazel正在执行的命令。这可能会暗示发生了什么。

另外,我在你的envvars中看到了这一点:

BAZEL_VC=C:/Program Files (x86)/Microsoft Visual Studio/2017/BuildTools/VC
BAZEL_VS=C:/Program Files (x86)/Microsoft Visual Studio 14.0

您只需要设置其中一个。我建议保留BAZEL_VC,因为这指向较新的编译器。我承认,我不知道当两个envvars被定义时会发生什么,Bazel是否更喜欢彼此。但我确实知道只有其中一个定义它才能正常工作。