Caffe python层后缀传递实现

时间:2017-10-18 17:21:04

标签: python deep-learning caffe

我正在编写一个caffe python图层,它沿特定轴(附加代码)转移[0 255]之间的输入,并且正向传递工作正常。这种图层需要向后传球吗?如果是的话,我该如何实现呢?

caffe_root = 'caffe_root'           
import sys
sys.path.insert(0, caffe_root + 'python')
import caffe
import numpy as np

class scale_layer(caffe.Layer):

  def setup(self, bottom, top):
    assert len(bottom)==1 and len(top)==1, "scale_layer expects a single input and a single output"

  def reshape(self, bottom, top):
    top[0].reshape(*bottom[0].data.shape)

  def forward(self, bottom, top):
    in_ = np.array(bottom[0].data)
    x_min = in_.min(axis=(0, 1), keepdims=True) 
    x_max = in_.max(axis=(0, 1), keepdims=True)
    top[0].data[...] = np.around(255*((in_-x_min)/(x_max-x_min)))

  def backward(self, top, propagate_down, bottom):
    # backward pass is not implemented!
    ???????????????????????????
    pass

1 个答案:

答案 0 :(得分:1)

如果您愿意忽略np.around

,那么您的功能非常简单

enter image description here

对于x=x_minx=x_max,导数为零,对于所有其他x导数为255/(x_max-x_min)

这可以通过

实现
def forward(self, bottom, top):
  in_ = bottom[0].data
  self.x_min = in_.min(axis=(0, 1), keepdims=True)  # cache min/max for backward
  self.x_max = in_.max(axis=(0, 1), keepdims=True)
  top[0].data[...] = 255*((in_-self.x_min)/(self.x_max-self.x_min)))

def backward(self, top, propagate_down, bottom):
  in_ = bottom[0].data
  b, c = in_.shape[:2]
  diff = np.tile( 255/(self.x_max-self.x_min), (b, c, 1, 1) )
  diff[ in_ == self.x_min ] = 0
  diff[ in_ == self.x_max ] = 0
  bottom[0].diff[...] = diff * top[0].diff

不要忘记对此进行数字测试。这可以通过例如test_gradient_for_python_layer来完成。