我正在为doc字符串中概述的编码类解决此问题。我将不胜感激任何有关优化我的代码的帮助,以及关于为什么我收到以下错误尽管重置索引的任何解释。
import pandas as pd
def beds_top_ten(df, facility_id):
'''
INPUT: DataFrame, int
OUTPUT: date
Write a pandas query that returns the ten census dates with the highest
number of available beds for the nursing home with the specified facility id
REQUIREMENTS:
Do a filter followed by a sort rather than a sort followed by a merge.
'''
df = pd.read_csv('beds.csv', low_memory= False)
df['Bed Census Date'] = pd.to_datetime(df['Bed Census Date'])
df = df.filter(items =['Facility ID', 'Bed Census Date','Available Residential Beds'])
df = df.sort_values(by =[ 'Facility ID', 'Available Residential Beds'], ascending= False)
df_group_by_ten = df.groupby('Facility ID').head(10).reset_index(drop=True)
dates = df_group_by_ten.loc[df_group_by_ten['Facility ID']==facility_id, 'Bed Census Date']
return dates
这是第一个groupby之后表格的样子:
Facility ID Bed Census Date Available Residential Beds
336 19 2011-01-05 29
339 19 2010-12-15 28
330 19 2011-02-23 27
332 19 2011-02-02 27
333 19 2011-01-26 27
334 19 2011-01-19 27
335 19 2011-01-12 27
338 19 2010-12-22 27
341 19 2010-12-01 27
331 19 2011-02-09 26
16 17 2013-04-10 22
87 17 2011-11-09 19
30 17 2013-01-02 17
37 17 2012-11-07 17
47 17 2012-08-29 17
31 17 2012-12-26 16
56 17 2012-06-20 16
10 17 2013-05-22 15
27 17 2013-01-23 15
61 17 2012-05-16 15
当我从command_line运行时:
In [15]: beds_top_ten('beds.csv',17)
Out[15]:
16 2013-04-10
87 2011-11-09
30 2013-01-02
37 2012-11-07
47 2012-08-29
31 2012-12-26
56 2012-06-20
10 2013-05-22
27 2013-01-23
61 2012-05-16
Name: Bed Census Date, dtype: datetime64[ns]
然而,当我在在线环境中运行相同的代码时,我收到以下错误:
/usr/local/lib/python2.7/unittest/suite.py:108: DtypeWarning: Columns (10,45) have mixed types. Specify dtype option on import or set low_memory=False.
test(result)
E
======================================================================
ERROR: test_fourth_pandas (test_methods.Test)
----------------------------------------------------------------------
Traceback (most recent call last):
File "/usr/src/app/test_methods.py", line 25, in test_fourth_pandas
all_equal = np.all(result == answer)
File "/usr/local/lib/python2.7/site-packages/pandas/core/ops.py", line 812, in wrapper
raise ValueError(msg)
ValueError: Can only compare identically-labeled Series objects
----------------------------------------------------------------------
Ran 1 test in 19.743s
FAILED (errors=1)
答案 0 :(得分:1)
pd.to_datetime
没有错。你可能错误的约会。请尝试指定格式,errors='coerce
以便将无效格式转换为NaT
。
df['Bed Census Date'] = pd.to_datetime(df['Bed Census Date'].str.strip(),
format='%Y-%m-%d', errors='coerce')
现在,扩展我的comment,过滤,排序,并使用head
获取前10个项目:
x = df[df['Facility ID'] == facility_id]\
.sort_values('Available Residential Beds', ascending=False).head(10)
return x['Bed Census Date']
答案 1 :(得分:0)
删除日期格式化行解决了上述错误。
df = pd.read_csv('beds.csv', low_memory= False)
#df['Bed Census Date'] = pd.to_datetime(df['Bed Census Date'])
df = df.filter(items=['Facility ID', 'Bed Census Date','Available Residential Beds'])
x = df[df['Facility ID'] == facility_id].sort_values('Available Residential Beds', ascending=False).head(10)
return x['Bed Census Date']